Seo, Soogil Truncated Euler systems. (English) Zbl 1204.11170 J. Reine Angew. Math. 614, 53-71 (2008). Summary: It is known that the order of the class group \(Cl_{K}\) of the real abelian field \(K\) is essentially equal to the order of the quotient \(E_{K}/C_{K}\) of the global units \(E_{K}\) by the circular units \(C_{K}\) of \(K\). However, the structures of these two groups are usually very different. Motivated by the theory of circular distributions and the special units of Rubin, we introduce a filtration to \(E_{K}\) made from the so-called truncated Euler systems and conjecture that the associated graded module is isomorphic, as a Galois module, to the class group. We use Euler systems to give evidence for this conjecture. Cited in 1 ReviewCited in 1 Document MSC: 11R23 Iwasawa theory 11G16 Elliptic and modular units 11R27 Units and factorization 11R29 Class numbers, class groups, discriminants PDF BibTeX XML Cite \textit{S. Seo}, J. Reine Angew. Math. 614, 53--71 (2008; Zbl 1204.11170) Full Text: DOI References: [1] Coleman R., Math. 356 pp 161– (1985) [2] Greither C., Ann. Inst. Fourier (Grenoble) 42 pp 449– (1992) [3] DOI: 10.1007/BF01388983 · Zbl 0628.12007 · doi:10.1007/BF01388983 [4] DOI: 10.1006/jnth.2000.2634 · Zbl 0995.11060 · doi:10.1006/jnth.2000.2634 [5] DOI: 10.1023/A:1023644822410 · Zbl 1023.11056 · doi:10.1023/A:1023644822410 [6] DOI: 10.1016/j.jnt.2004.06.010 · Zbl 1081.11070 · doi:10.1016/j.jnt.2004.06.010 [7] Seo S., Math. Res. Let. 13 pp 1– (2006) [8] DOI: 10.2307/1970932 · Zbl 0395.12014 · doi:10.2307/1970932 [9] DOI: 10.1007/BF01389158 · Zbl 0465.12001 · doi:10.1007/BF01389158 [10] DOI: 10.1017/S0305004100069073 · Zbl 0717.11046 · doi:10.1017/S0305004100069073 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.