×

Characteristic classes of symmetric products of complex quasi-projective varieties. (English) Zbl 1400.14024

Let \(X\) be a complex quasi-projective variety and let \(X^{(n)}\) denote its symmetric product. Let \(T_{y*}:K_0(var/X)\rightarrow H_{ev}^{BM}(X)\oplus\mathbb{Q}[y]\) be the un-normalized motivic Hirzebruch class transformation, where \(H_{ev}^{BM}(X)\) denotes the Borel-Moore homology in even degrees and \(K_0(var/X)\) the relative Grothendieck group of complex algebraic varieties over \(X\) (see [J.-P. Brasselet et al., J. Topol. Anal. 2, No. 1, 1–55 (2010; Zbl 1190.14009)]). For any positive integer \(r\), let \(d^r:X\rightarrow X^{(r)}\) denote the composition of the diagonal embedding \(X\hookrightarrow X^r\) with the projection \(X^r\rightarrow X^{(r)}\), and let \(\Psi_r\) denote the \(r\)-th homological Adams operation, which on \(H_{2k}^{BM}(X^{(r)},\mathbb{Q})\) is defined by multiplication by \(1/r^k\), together with \(y\mapsto y^r\). The main result of this paper is the folloing generating series formula for the Hirzebruch classes of the symmetric powers \(\mathcal{M}^{(n)}\in D^b\text{MHM}(X^{(n)})\) of a fixed complex of mixed Hodge modules on the variety \(X\): \(\sum_{n\geq 0}T_{(-y)*}(\mathcal{M}^{(n)})\cdot t^n=\text{exp}\left(\sum_{r\geq 1}\Psi_r(d_*^rT_{(-y)*}(\mathcal{M}))\cdot\frac{t^r}{r}\right)\). If one lets \(\mathcal{M}\) be the constant Hodge sheaf \(\mathbb{Q}_X^H\), the above formula becomes the expression \(\sum_{n\geq 0}T_{(-y)*}(X^{(n)})\cdot t^n=\text{exp}\left(\sum_{r\geq 1}\Psi_r(d_*^rT_{(-y)*}(X))\cdot\frac{t^r}{r}\right)\) for the motivic Hirzebruch classes.

MSC:

14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14C25 Algebraic cycles

Citations:

Zbl 1190.14009
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. F. Atiyah, Power operations in K-theory, Quart. J. Math. 17 (1966), 165-193.; Atiyah, M. F., Power operations in K-theory, Quart. J. Math., 17, 165-193 (1966) · Zbl 0144.44901
[2] P. Baum, W. Fulton and R. MacPherson, Riemann-Roch for singular varieties, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 101-145.; Baum, P.; Fulton, W.; MacPherson, R., Riemann-Roch for singular varieties, Publ. Math. Inst. Hautes Études Sci., 45, 101-145 (1975) · Zbl 0332.14003
[3] P. Baum, W. Fulton and G. Quart, Lefschetz-Riemann-Roch for singular varieties, Acta Math. 143 (1979), no. 3-4, 193-211.; Baum, P.; Fulton, W.; Quart, G., Lefschetz-Riemann-Roch for singular varieties, Acta Math., 143, 3-4, 193-211 (1979) · Zbl 0454.14009
[4] L. Borisov and A. Libgober, Elliptic genera of singular varieties, orbifold elliptic genus and chiral de Rham complex, Mirror symmetry IV (Montreal 2000), AMS/IP Stud. Adv. Math. 33, American Mathematical Society, Providence (2002), 325-342.; Borisov, L.; Libgober, A., Elliptic genera of singular varieties, orbifold elliptic genus and chiral de Rham complex, Mirror symmetry IV, 325-342 (2002) · Zbl 1107.11023
[5] J. P. Brasselet, J. Schürmann and S. Yokura, Hirzebruch classes and motivic Chern classes of singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1-55.; Brasselet, J. P.; Yokura, J. Schürmann and S., Hirzebruch classes and motivic Chern classes of singular spaces, J. Topol. Anal., 2, 1, 1-55 (2010) · Zbl 1190.14009
[6] S. E. Cappell, L. Maxim, T. Ohmoto, J. Schn̈urmann and S. Yokura, Characteristic classes of Hilbert schemes of points via symmetric products, Geom. Topol. 17 (2013), no. 2, 1165-1198.; Cappell, S. E.; Maxim, L.; Ohmoto, T.; Schn̈urmann, J.; Yokura, S., Characteristic classes of Hilbert schemes of points via symmetric products, Geom. Topol., 17, 2, 1165-1198 (2013) · Zbl 1318.14008
[7] S. E. Cappell, L. Maxim, J. Schürmann and J. L. Shaneson, Equivariant characteristic classes of complex algebraic varieties, Comm. Pure Appl. Math. 65 (2012), no. 12, 1722-1769.; Cappell, S. E.; Maxim, L.; Schürmann, J.; Shaneson, J. L., Equivariant characteristic classes of complex algebraic varieties, Comm. Pure Appl. Math., 65, 12, 1722-1769 (2012) · Zbl 1276.14009
[8] S. E. Cappell, L. Maxim and J. L. Shaneson, Hodge genera of algebraic varieties. I, Comm. Pure Appl. Math. 61 (2008), no. 3, 422-449.; Cappell, S. E.; Maxim, L.; Shaneson, J. L., Hodge genera of algebraic varieties. I, Comm. Pure Appl. Math., 61, 3, 422-449 (2008) · Zbl 1129.14018
[9] S. E. Cappell and J. L. Shaneson, Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991), no. 3, 521-551.; Cappell, S. E.; Shaneson, J. L., Stratifiable maps and topological invariants, J. Amer. Math. Soc., 4, 3, 521-551 (1991) · Zbl 0746.32016
[10] P. Du Bois, Complexe de De Rham filtré d’une variété singulière, Bull. Soc. Math. France 109 (1981), 41-81.; Du Bois, P., Complexe de De Rham filtré d’une variété singulière, Bull. Soc. Math. France, 109, 41-81 (1981) · Zbl 0465.14009
[11] W. Fulton and S. Lang, Riemann-Roch algebra, Grundlehren Math. Wiss. 277, Springer, New York 1985.; Fulton, W.; Lang, S., Riemann-Roch algebra (1985) · Zbl 0579.14011
[12] F. Hirzebruch, Topological methods in algebraic geometry, Springer, Berlin 1966.; Hirzebruch, F., Topological methods in algebraic geometry (1966) · Zbl 0138.42001
[13] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint (2000), .; Kapranov, M., The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups (2000)
[14] S. Kovács and K. Schwede, Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of stratified spaces, Math. Sci. Res. Inst. Publ. 58, Cambridge University Press, Cambridge (2011), 51-94.; Kovács, S.; Schwede, K., Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of stratified spaces, 51-94 (2011) · Zbl 1248.14019
[15] E. Looijenga, Motivic measures, Séminaire Bourbaki. Volume 1999/2000. Exposés 865-879, Astérisque 276, Société Mathématique de France, Paris (2002), 267-297.; Looijenga, E., Motivic measures, Séminaire Bourbaki. Volume 1999/2000. Exposés 865-879, 267-297 (2002) · Zbl 0996.14011
[16] I. G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962), 563-568.; Macdonald, I. G., The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc., 58, 563-568 (1962) · Zbl 0121.39601
[17] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423-432.; MacPherson, R., Chern classes for singular algebraic varieties, Ann. of Math. (2), 100, 423-432 (1974) · Zbl 0311.14001
[18] B. Moonen, Das Lefschetz-Riemann-Roch Theorem für singuläre Varietäten, Bonner Math. Schriften 106 (1978).; Moonen, B., Das Lefschetz-Riemann-Roch Theorem für singuläre Varietäten, Bonner Math. Schriften, 106 (1978) · Zbl 0415.14008
[19] L. Maxim, M. Saito and J. Schürmann, Symmetric products of mixed Hodge modules, J. Math. Pures Appl. (9) 96 (2011), no. 5, 462-483.; Maxim, L.; Saito, M.; Schürmann, J., Symmetric products of mixed Hodge modules, J. Math. Pures Appl. (9), 96, 5, 462-483 (2011) · Zbl 1238.32021
[20] L. Maxim and J. Schürmann, Hirzebruch invariants of symmetric products, Topology of algebraic varieties and singularities, Contemp. Math. 538, American Mathematical Society, Providence (2011), 163-177.; Maxim, L.; Schürmann, J., Hirzebruch invariants of symmetric products, Topology of algebraic varieties and singularities, 163-177 (2011) · Zbl 1221.14010
[21] L. Maxim and J. Schürmann, Twisted genera of symmetric products, Selecta Math. (N.S.) 18 (2012), no. 1, 283-317.; Maxim, L.; Schürmann, J., Twisted genera of symmetric products, Selecta Math. (N.S.), 18, 1, 283-317 (2012) · Zbl 1245.55009
[22] M. Nori, The Hirzebruch-Riemann-Roch theorem, Michigan Math. J. 48 (2000), 473-482.; Nori, M., The Hirzebruch-Riemann-Roch theorem, Michigan Math. J., 48, 473-482 (2000) · Zbl 1077.14510
[23] T. Ohmoto, Generating functions for orbifold Chern classes I: Symmetric products, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 2, 423-438.; Ohmoto, T., Generating functions for orbifold Chern classes I: Symmetric products, Math. Proc. Cambridge Philos. Soc., 144, 2, 423-438 (2008) · Zbl 1143.14010
[24] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849-995.; Saito, M., Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., 24, 6, 849-995 (1988) · Zbl 0691.14007
[25] M. Saito, Induced D-modules and differential complexes, Bull. Soc. Math. France 117 (1989), 361-387.; Saito, M., Induced D-modules and differential complexes, Bull. Soc. Math. France, 117, 361-387 (1989) · Zbl 0705.32005
[26] M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221-333.; Saito, M., Mixed Hodge modules, Publ. Res. Inst. Math. Sci., 26, 2, 221-333 (1990) · Zbl 0727.14004
[27] M. Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283-331.; Saito, M., Mixed Hodge complexes on algebraic varieties, Math. Ann., 316, 2, 283-331 (2000) · Zbl 0976.14011
[28] J. Schürmann, A general construction of partial Grothendieck transformations, preprint (2003), .; Schürmann, J., A general construction of partial Grothendieck transformations (2003)
[29] J. Schürmann, Characteristic classes of mixed Hodge modules, Topology of stratified spaces, Math. Sci. Res. Inst. Publ. 58, Cambridge University Press, Cambridge (2011), 419-470.; Schürmann, J., Characteristic classes of mixed Hodge modules, Topology of stratified spaces, 419-470 (2011) · Zbl 1235.14010
[30] J. Schürmann and S. Yokura, A survey of characteristic classes of singular spaces, Singularity theory. Proceedings of the 2005 Marseille singularity school and conference (Marseille 2005), World Scientific, Singapore (2007), 865-952.,; Schürmann, J.; Yokura, S., A survey of characteristic classes of singular spaces, Singularity theory. Proceedings of the 2005 Marseille singularity school and conference, 865-952 (2007) · Zbl 1126.14007
[31] D. Yau, Lambda-rings, World Scientific, Hackensack 2010.; Yau, D., Lambda-rings (2010) · Zbl 1198.13003
[32] S. Yokura, Motivic characteristic classes, Topology of stratified spaces, Math. Sci. Res. Inst. Publ. 58, Cambridge University Press, Cambridge (2011), 375-418.; Yokura, S., Motivic characteristic classes, Topology of stratified spaces, 375-418 (2011) · Zbl 1235.14011
[33] D. Zagier, Equivariant Pontrjagin classes and applications to orbit spaces. Applications of the G-signature theorem to transformation groups, symmetric products and number theory, Lecture Notes in Math. 290, Springer, Berlin 1972.; Zagier, D., Equivariant Pontrjagin classes and applications to orbit spaces. Applications of the G-signature theorem to transformation groups, symmetric products and number theory (1972) · Zbl 0238.57013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.