×

Nonparametric estimation of the kernel function of symmetric stable moving average random functions. (English) Zbl 1469.62222

Summary: We estimate the kernel function of a symmetric alpha stable \((S\alpha S)\) moving average random function which is observed on a regular grid of points. The proposed estimator relies on the empirical normalized (smoothed) periodogram. It is shown to be weakly consistent for positive definite kernel functions, when the grid mesh size tends to zero and at the same time the observation horizon tends to infinity (high-frequency observations). A simulation study shows that the estimator performs well at finite sample sizes, when the integrator measure of the moving average random function is \(S\alpha S\) and for some other infinitely divisible integrators.

MSC:

62G05 Nonparametric estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Akhiezer, N. I. (1988). Lectures on integral transforms, volume 70 of translations of mathematical monographs. Providence, RI: American Mathematical Society. Translated from the Russian by H. H. McFaden. · Zbl 0652.44001
[2] Brockwell, PJ, Recent results in the theory and applications of CARMA processes, Annals of the Institute of Statistical Mathematics, 66, 4, 647-685 (2014) · Zbl 1334.60003 · doi:10.1007/s10463-014-0468-7
[3] Brockwell, PJ; Ferrazzano, V.; Klüppelberg, C., High-frequency sampling and kernel estimation for continuous-time moving average processes, Journal of Time Series Analysis, 34, 3, 385-404 (2013) · Zbl 1274.62578 · doi:10.1111/jtsa.12022
[4] Brockwell, PJ; Lindner, A., Existence and uniqueness of stationary Lévy-driven CARMA processes, Stochastic Processes and their Applications, 119, 8, 2660-2681 (2009) · Zbl 1182.62172 · doi:10.1016/j.spa.2009.01.006
[5] Cambanis, S.; Podgórski, K.; Weron, A., Chaotic behavior of infinitely divisible processes, Studia Mathematica, 115, 2, 109-127 (1995) · Zbl 0835.60008
[6] Chèn, K. (2011). Estimation of the parameters of \(\alpha \)-stable distributions. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, (1), 75-81, 127.
[7] Fan, Z., Parameter estimation of stable distributions, Communications in Statistics. Theory and Methods, 35, 1-3, 245-255 (2006) · Zbl 1084.62019 · doi:10.1080/03610920500439992
[8] Fasen, V.; Fuchs, F., On the limit behavior of the periodogram of high-frequency sampled stable CARMA processes, Stochastic Processes and their Applications, 123, 1, 229-273 (2013) · Zbl 1275.62069 · doi:10.1016/j.spa.2012.08.003
[9] Fasen, V.; Fuchs, F., Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes, Journal of Time Series Analysis, 34, 5, 532-551 (2013) · Zbl 1282.62192 · doi:10.1111/jtsa.12029
[10] Feller, W., An introduction to probability theory and its applications (1966), New York, London, Sydney: Wiley, New York, London, Sydney · Zbl 0138.10207
[11] García, I.; Klüppelberg, C.; Müller, G., Estimation of stable CARMA models with an application to electricity spot prices, Statistical Modelling. An International Journal, 11, 5, 447-470 (2011) · Zbl 1420.62363 · doi:10.1177/1471082X1001100504
[12] Gu, J.; Mao, SS, Estimation of the parameter of stable distributions, Chinese Journal of Applied Probability and Statistics, 18, 4, 342-346 (2002) · Zbl 1155.62337
[13] Hesse, CH, A Bahadur-type representation for empirical quantiles of a large class of stationary, possibly infinite-variance, linear processes, The Annals of Statistics, 18, 3, 1188-1202 (1990) · Zbl 0712.62042 · doi:10.1214/aos/1176347746
[14] Hida, T., Hitsuda, M. (1993). Gaussian processes, volume 120 of translations of mathematical monographs. Providence, RI: American Mathematical Society. Translated from the 1976 Japanese original by the authors. · Zbl 0793.60002
[15] Janczura, J.; Orzeł, S.; Wyłomańska, A., Subordinated \(\alpha \)-stable Ornstein-Uhlenbeck process as a tool for financial data description, Physica A, 390, 4379-4387 (2011) · doi:10.1016/j.physa.2011.07.007
[16] Kampf, J., Shevchenko, G., Spodarev, E. (2019). Nonparametric estimation of the kernel function of symmetric stable moving average random functions (preprint). arXiv:1706.06289.
[17] Karcher, W. (2012). On infinitely divisible random fields with an application in insurance. Ph.D. thesis, Ulm University, Ulm, Germany.
[18] Karcher, W.; Scheffler, HP; Spodarev, E.; Capasso, V., Efficient simulation of stable random fields and its applications, Stereology and image analysis. Ecs10: proceedings of the 10th European congress of ISS, the MIRIAM project series, 63-72 (2009), ologna, Italy: ESCULAPIO Pub. Co., ologna, Italy
[19] Karcher, W.; Scheffler, H-P; Spodarev, E., Simulation of infinitely divisible random fields, Communications in Statistics. Simulation and Computation, 42, 1, 215-246 (2013) · Zbl 1277.60096 · doi:10.1080/03610918.2011.634536
[20] Karcher, W., Spodarev, E. (2012). Kernel function estimation of stable moving average random fields. Ulm University, Ulm (preprint). http://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/forschung/preprints/kernel_estimation_stable.pdf.
[21] Koblents, E.; Míguez, J.; Rodríguez, MA; Schmidt, AM, A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of \(\alpha \)-stable distributions, Computational Statistics & Data Analysis, 95, 57-74 (2016) · Zbl 1468.62105 · doi:10.1016/j.csda.2015.09.007
[22] Koutrouvelis, IA, Regression-type estimation of the parameters of stable laws, Journal of the American Statistical Association, 75, 372, 918-928 (1980) · Zbl 0449.62026 · doi:10.1080/01621459.1980.10477573
[23] Koutrouvelis, IA, An iterative procedure for the estimation of the parameters of stable laws, Communications in Statistics. B. Simulation and Computation, 10, 1, 17-28 (1981) · Zbl 0474.62028 · doi:10.1080/03610918108812189
[24] Kulik, R., Bahadur-Kiefer theory for sample quantiles of weakly dependent linear processes, Bernoulli. Official Journal of the Bernoulli Society for Mathematical Statistics and Probability, 13, 4, 1071-1090 (2007) · Zbl 1232.62073
[25] Lantuéjoul, C., Geostatistical simulation: Models and algorithms (2002), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0990.86007 · doi:10.1007/978-3-662-04808-5
[26] McCulloch, JH, Simple consistent estimators of stable distribution parameters, Communications in Statistics. B. Simulation and Computation, 15, 4, 1109-1136 (1986) · Zbl 0612.62028 · doi:10.1080/03610918608812563
[27] Mikosch, T.; Gadrich, T.; Klüppelberg, C.; Adler, RJ, Parameter estimation for ARMA models with infinite variance innovations, The Annals of Statistics, 23, 1, 305-326 (1995) · Zbl 0822.62076 · doi:10.1214/aos/1176324469
[28] Müller, G.; Seibert, A., Bayesian estimation of stable carma spot models for electricity prices, Energy Economics, 78, 267-277 (2019) · doi:10.1016/j.eneco.2018.10.016
[29] Rosiński, J., On uniqueness of the spectral representation of stable processes, Journal of Theoretical Probability, 7, 3, 615-634 (1994) · Zbl 0805.60030 · doi:10.1007/BF02213572
[30] Samorodnitsky, G.; Taqqu, MS, Stable non-Gaussian random processes: Stochastic models with infinite variance. Stochastic Modeling (1994), New York: Chapman & Hall, New York · Zbl 0925.60027
[31] Sato, K. -I. (2013). Lévy processes and infinitely divisible distributions, volume 68 of Cambridge studies in advanced mathematics. Cambridge: Cambridge University Press. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation. · Zbl 1287.60003
[32] Trigub, RM; Bellinsky, ES, Fourier analysis and approximation of functions (2004), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1063.42001 · doi:10.1007/978-1-4020-2876-2
[33] Wang, Y.; Yang, W.; Hu, S., The Bahadur representation of sample quantiles for weakly dependent sequences, Stochastics, 88, 3, 428-436 (2016) · Zbl 1341.62085 · doi:10.1080/17442508.2015.1085537
[34] Wu, WB, On the Bahadur representation of sample quantiles for dependent sequences, The Annals of Statistics, 33, 4, 1934-1963 (2005) · Zbl 1080.62024 · doi:10.1214/009053605000000291
[35] Zolotarev, V. M. (1986). One-dimensional stable distributions. Translations of Mathematical Monographs—Vol 65. AMS. · Zbl 0589.60015
[36] Zolotarev, VM; Uchaikin, VV, Chance and stability. Stable distributions and their applications. Modern probability and statistics (1999), Berlin: Walter de Gruyter, Berlin · Zbl 0944.60006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.