×

Simulating nanoscale functional motions of biomolecules. (English) Zbl 1109.92006

Summary: We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component analysis (PCA) or a singular value decomposition (SVD) of the trajectory. Normal mode analysis (NMA) is a related collective coordinate space approach, which involves the decomposition of the motion into vibration modes based on an elastic model. Using the myosin motor protein as an example we describe a hybrid technique termed amplified collective motions (ACM) that enhances sampling of conformational space through a combination of normal modes with atomic level MD.
Unfortunately, the forced orthogonalization of modes in collective coordinate space leads to complex dependencies that are not necessarily consistent with the symmetry of biological macromolecules and assemblies. In many biological molecules, such as HIV-1 protease, reflective or rotational symmetries are present that are broken using standard orthogonal basis functions. We present a method to compute the plane of reflective symmetry or the axis of rotational symmetry from the trajectory frames. Moreover, we develop an SVD that best approximates the given trajectory while respecting the symmetry. Finally, we describe a local feature analysis (LFA) to construct a topographic representation of functional dynamics in terms of local features. The LFA representations are low-dimensional, and provide a reduced basis set for collective motions, but unlike global collective modes they are sparsely distributed and spatially localized. This yields a more reliable assignment of essential dynamics modes across different MD time windows.

MSC:

92C05 Biophysics
92-08 Computational methods for problems pertaining to biology
92C40 Biochemistry, molecular biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
62H25 Factor analysis and principal components; correspondence analysis

Software:

ARPACK
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Jakobsson E., Biomed. Comput. Rev. 1 pp 11– (2005)
[2] Alberts B., Cell 92 pp 291– (1998)
[3] Karplus M., Modelling of Molecular Structures and Properties pp 427– (1990)
[4] Brooks C.L., Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics, Volume LXXI of Advances in Chemical Physics (1988)
[5] Clarage J.B., Proc. Natl. Acad. Sci. USA 92 pp 3288– (1995)
[6] Hernández G., Proc. Natl. Acad. Sci. USA 97 pp 3166– (2000)
[7] Falke J.J., Science 295 pp 1480– (2002)
[8] Bjorkman P., Supramolecular Assemblies: Current Technology and Resource Needs (1999)
[9] Ryckaert J.-P., J. Comp. Phys. 23 pp 327– (1977)
[10] Peskin C.S., Commun. Pure Appl. Math. 42 pp 1001– (1989) · Zbl 0681.92003
[11] Zhang G., J. Chem. Phys. 101 pp 4995– (1994)
[12] Watanabe M., J. Phys. Chem. 99 pp 5680– (1995)
[13] Eastman P., Proteins Struct. Funct. Genet. 30 pp 215– (1998)
[14] Feenstra K.A., J. Comput. Chem. 20 pp 786– (1999) · Zbl 05428340
[15] Mazur A.K., J. Comp. Phys. 92 pp 261– (1991) · Zbl 0711.92024
[16] Schwieters C.D., J. Magn. Reson. 152 pp 288– (2001)
[17] Zhou Y., Nature 401 pp 400– (1999)
[18] Clementi C., J. Mol. Biol. 298 pp 937– (2000)
[19] Bahar I., Biochemistry 36 pp 13512– (1997)
[20] Sali A., J. Mol. Biol. 235 pp 1614– (1994)
[21] Li H., Science 273 pp 666– (1996)
[22] Shakhnovich E.I., Curr. Opin. Struct. Biol. 7 pp 29– (1997)
[23] Grubmüller H., Phys. Rev. E 52 pp 2893– (1995)
[24] Bartels C., J. Phys. Chem. B 102 pp 865– (1998)
[25] Nakajima N., J. Phys. Chem. B 101 pp 817– (1997)
[26] Ferrenberg A.M., Phys. Rev. Lett. 61 pp 2635– (1988)
[27] Wu X., J. Phys. Chem. B 102 pp 7238– (1998)
[28] Schlitter J., Mol. Simulation 10 pp 291– (1993)
[29] Wriggers W., Proteins Struct. Funct. Genet. 35 pp 262– (1999)
[30] Zhang Z., Biophys. J. 84 pp 3583– (2003)
[31] Horiuchi T., Proteins Struct. Funct. Genet. 10 pp 106– (1991)
[32] Kitao A., Chem. Phys. 158 pp 447– (1991)
[33] Amadei A., Proteins Struct. Funct. Genet. 17 pp 412– (1993)
[34] van Aalten M.F., Proteins Struct. Funct. Genet. 22 pp 45– (1995)
[35] García A.E., Phys. Rev. Lett. 68 pp 2696– (1992)
[36] Kitao A., Curr. Opin. Struct. Biol. 9 pp 164– (1999)
[37] Berendsen H.J.C., Curr. Opin. Struct. Biol. 10 pp 165– (2000)
[38] Brooks B.R., J. Comput. Chem. 16 pp 1522– (1995) · Zbl 05428058
[39] Case D.A., Curr. Opin. Struct. Biol. 4 pp 285– (1994)
[40] Karhunen K., Ann. Acad. Sci. Fenn A pp 137– (1947)
[41] Janezic D., J. Comput. Chem. 16 pp 1554– (1995) · Zbl 05428629
[42] Karplus M., Macromolecules 14 pp 325– (1981)
[43] Levy R.M., Biopolymers 23 pp 1099– (1984)
[44] Case D.A., Computer Simulation of Biomolecular Systems 3 pp 284– (1997)
[45] McQuarrie D.A., Statistical Mechanics (1976) · Zbl 1137.82301
[46] Kitao A., Proteins Struct. Func. Genet. 33 pp 496– (1998)
[47] Balsera M.A., J. Phys. Chem. 100 pp 2567– (1996)
[48] Bahar I., Fold. Des. 2 pp 173– (1997)
[49] Chacón P., J. Mol. Biol. 326 pp 485– (2003)
[50] Holmes K.C., Nature 425 pp 423– (2003)
[51] Scott W.R.P., J. Phys. Chem. A 103 pp 3596– (1999)
[52] Berendsen H.J.C., Intermolecular Forces pp 331– (1981)
[53] Berendsen H.J.C., J. Chem. Phys. 81 pp 3684– (1984)
[54] Block S.M., Cell 87 pp 151– (1996)
[55] Jontes J.D., Nature 378 pp 751– (1995)
[56] Kitamura K., Nature 397 pp 129– (1999)
[57] Tama F., Protein Eng. 14 pp 1– (2001)
[58] Brandstetter H., Nature 414 pp 466– (2001)
[59] Zhang Z., Proteins Struct. Funct. Bioinformatics (2006)
[60] Lehoucq R.B., ARPACK Users’ Guide – Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1998) · Zbl 0901.65021
[61] Erickson J., Science 349 pp 527– (1990)
[62] Fananapazir L., Proc. Natl. Acad. Sci. USA 90 pp 3993– (1993)
[63] Zhang L., Proteins Struct. Funct. Genet. 24 pp 433– (1996)
[64] Humphrey W.F., J. Mol. Graph. 14 pp 33– (1996)
[65] Rayment I., Science 261 pp 50– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.