×

Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media. (English) Zbl 1302.76127

Summary: A discrete empirical interpolation method (DEIM) is applied in conjunction with proper orthogonal decomposition (POD) to construct a non-linear reduced-order model of a finite difference discretized system used in the simulation of non-linear miscible viscous fingering in a 2-D porous medium. POD is first applied to extract a low-dimensional basis that optimally captures the dominant characteristics of the system trajectory. This basis is then used in a Galerkin projection scheme to construct a reduced-order system. DEIM is then applied to greatly improve the efficiency in computing the projected non-linear terms in the POD reduced system. DEIM achieves a complexity reduction of the non-linearities, which is proportional to the number of reduced variables, whereas POD retains a complexity proportional to the original number of variables. Numerical results demonstrate that the dynamics of the viscous fingering in the full-order system of dimension 15,000 can be captured accurately by the POD-DEIM reduced system of dimension 40 with the computational time reduced by factor of \(\mathcal O(1000)\).

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76S05 Flows in porous media; filtration; seepage
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D27 Other free boundary flows; Hele-Shaw flows
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Chaturantabut S., TR09-05, CAAM, Rice U. (2009)
[2] DOI: 10.1063/1.865832 · Zbl 0608.76087
[3] DOI: 10.1063/1.866726
[4] DOI: 10.1103/PhysRevE.79.016308
[5] DOI: 10.1137/0720046 · Zbl 0519.76107
[6] DOI: 10.1002/fld.803 · Zbl 1065.76153
[7] DOI: 10.1103/PhysRevE.78.066306
[8] DOI: 10.1063/1.2799999
[9] Riviere B., Comput. Methods Water Res pp 907– (2002)
[10] DOI: 10.1016/j.physd.2003.03.001 · Zbl 1098.76602
[11] DOI: 10.1137/S0036142900382612 · Zbl 1075.65118
[12] DOI: 10.2514/1.2159
[13] DOI: 10.1023/A:1021732508059 · Zbl 0949.93039
[14] DOI: 10.1016/j.advwatres.2003.09.008
[15] DOI: 10.1029/2005WR004536
[16] DOI: 10.1029/2004WR003698
[17] DOI: 10.1061/(ASCE)0733-9496(2008)134:2(161)
[18] DOI: 10.2118/88361-PA
[19] DOI: 10.1002/nme.1721 · Zbl 1178.76285
[20] DOI: 10.1007/s10596-005-9014-2 · Zbl 1161.86304
[21] DOI: 10.1002/nme.2453 · Zbl 1156.76420
[22] DOI: 10.1016/j.jcp.2009.10.004 · Zbl 1253.76122
[23] Gharbi R., In Situ 21 pp 331– (1997)
[24] DOI: 10.1016/S0920-4105(96)00077-0
[25] DOI: 10.1016/S0307-904X(00)00008-1 · Zbl 1044.76064
[26] DOI: 10.1081/LFT-120017448
[27] DOI: 10.1016/j.crma.2004.08.006 · Zbl 1061.65118
[28] DOI: 10.1051/m2an:2007031 · Zbl 1142.65078
[29] DOI: 10.1002/nme.2309 · Zbl 1162.65407
[30] Astrid P., Department of Electrical Engineering (2004)
[31] Rewienski M.J., A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems (2003)
[32] DOI: 10.1109/TAC.2008.2006102 · Zbl 1367.93110
[33] DOI: 10.1007/s10827-010-0229-4 · Zbl 05785011
[34] DOI: 10.1137/1.9780898719604 · Zbl 0934.65030
[35] Daniel J.W., Math. Comput. 30 pp 772– (1976)
[36] DOI: 10.1016/j.jcp.2009.03.008 · Zbl 1260.76024
[37] DOI: 10.1051/m2an:2005006 · Zbl 1079.65096
[38] DOI: 10.1137/070694855 · Zbl 1196.37127
[39] DOI: 10.1016/j.jcp.2007.08.031 · Zbl 1140.65077
[40] Haasdonk, B. and Ohlberger, M. 2008. Adaptive Basis Enrichment for the Reduced Basis Method Applied to Finite Volume Schemes. Proceedings of 5th International Symposium on Finite Volumes for Complex Applications. June8–132008, France. Aussois. · Zbl 1422.65207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.