×

On the convergence of the elastic flow in the hyperbolic plane. (English) Zbl 1437.53075

Summary: We examine the \(L^2\)-gradient flow of Euler’s elastic energy for closed curves in hyperbolic space and prove convergence to the global minimizer for initial curves with elastic energy bounded by 16. We show the sharpness of this bound by constructing a class of curves whose lengths blow up in infinite time. The convergence results follow from a constrained sharp Reilly-type inequality.

MSC:

53E10 Flows related to mean curvature
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
65K10 Numerical optimization and variational techniques

Software:

CandS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, 1964. MR 0167642 · Zbl 0171.38503
[2] Christian Bär, Elementary Differential Geometry, Cambridge University Press, 2010. · Zbl 1191.53001
[3] Matthias Bergner, Anna Dall’Acqua, and Steffen Fröhlich, Symmetric Willmore surfaces of revolution satisfying natural boundary conditions, Calc. Var. Partial Differential Equations 39 (2010), no. 3-4, 361-378. MR 2729304 · Zbl 1207.49049
[4] Simon Blatt, A singular example for the Willmore flow, Analysis (Munich) 29 (2009), no. 4, 407-430. MR 2591055 · Zbl 1184.53068
[5] Simon Blatt, A note on singularities in finite time for the constrained willmore flow, Preprint (2018).
[6] Ralph Chill, Eva Fašangová, and Reiner Schätzle, Willmore blowups are never compact, Duke Math. J. 147 (2009), no. 2, 345-376. · Zbl 1175.35079
[7] Ralph Chill, On the Łojasiewicz-Simon gradient inequality, Journal of Functional Analysis 201 (2003), no. 2, 572 - 601. · Zbl 1036.26015
[8] Harold T. Davis, Introduction to nonlinear differential and integral equations, Dover Publications, Inc., New York, 1962. MR 0181773 · Zbl 0106.28904
[9] Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1138207 · Zbl 1412.53001
[10] Anna Dall’Acqua, Klaus Deckelnick, and Hans-Christoph Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var. 1 (2008), no. 4, 379-397. MR 2480063 · Zbl 1194.49060
[11] Gerhard Dziuk, Ernst Kuwert, and Reiner Schätzle, Evolution of elastic curves in ℝ^n: existence and computation, SIAM J. Math. Anal. 33 (2002), no. 5, 1228-1245. MR 1897710 · Zbl 1031.53092
[12] Anna Dall’Acqua, Tim Laux, Chun-Chi Lin, Paola Pozzi and Adrian Spener, The elastic flow of curves on the sphere, Geometric Flows 3(1), 1-13 (2018). · Zbl 1393.53057
[13] Anna Dall’Acqua and Paola Pozzi, A Willmore-Helfrich L^2-flow of curves with natural boundary conditions, Comm. Anal. Geom. 22 (2014), no. 4, 617-669. MR 3263933 · Zbl 1319.53070
[14] Anna Dall’Acqua, Paola Pozzi, and Adrian Spener, The Łojasiewicz-Simon gradient inequality for open elastic curves, Journal of Differential Equations 261 (2016), no. 3, 2168 - 2209. · Zbl 1338.35223
[15] Anna Dall’Acqua and Adrian Spener, The elastic flow of curves in the hyperbolic plane, Preprint (https://arxiv.org/abs/1710.09600) (2017).
[16] Anna Dall’Acqua and Adrian Spener, Circular solutions to the elastic flow in hyperbolic space, RIMS Kôkyûroku, Proceedings of the conference Analysis on Shapes of Solutions to Partial Differential Equations, Kyoto 2017/06/05-2017/06/07 (2018), no. 2082.
[17] Sascha Eichmann and Hans-Christoph Grunau, Existence for willmore surfaces of revolution satisfying non-symmetric dirichlet boundary conditions, preprint (2016). · Zbl 1426.49044
[18] Sascha Eichmann, Nichtperiodische Fortsetzbarkeit von Willmore-Flächen unter Axialsymmetrie, 2014.
[19] Sascha Eichmann, Willmore surfaces of revolution satisfying dirichlet data, Preprint (2017). · Zbl 1353.53065
[20] Ahmad El Soufi and Saïd Ilias, Une inégalité du type “reilly” pour les sous-variétés de l’espace hyperbolique, Commentarii Mathematici Helvetici 67 (1992), no. 1, 167-181. · Zbl 0758.53029
[21] Alfred Gray, Elsa Abbena, and Simon Salamon, Modern differential geometry of curves and surfaces with Mathematica^®, third ed., Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2253203 · Zbl 1123.53001
[22] Mohammad Ghomi, A Riemannian four vertex theorem for surfaces with boundary, Proc. Amer. Math. Soc. 139 (2011), no. 1, 293-303. MR 2729091 · Zbl 1216.53040
[23] Lynn Heller, Constrained Willmore tori and elastic curves in 2-dimensional space forms, Comm. Anal. Geom. 22 (2014), no. 2, 343-369. MR 3210758 · Zbl 1295.53064
[24] Norihito Koiso, Convergence towards an elastica in a Riemannian manifold, Osaka J. Math. 37 (2000), no. 2, 467-487. MR 1427766 · Zbl 0967.58009
[25] Ernst Kuwert and Reiner Schätzle, Removability of point singularities of Willmore surfaces, Ann. of Math. (2) 160 (2004), no. 1, 315-357. MR 2119722 · Zbl 1078.53007
[26] Anders Linnér, Curve-straightening and the Palais-Smale condition, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3743-3765. MR 1432203 · Zbl 0921.58008
[27] Chun-Chi Lin, L^2-flow of elastic curves with clamped boundary conditions, J. Differential Equations 252 (2012), no. 12, 6414-6428. MR 2911840 · Zbl 1243.35089
[28] Joel Langer and David Singer, Curves in the hyperbolic plane and mean curvature of tori in 3-space, Bull. London Math. Soc. 16 (1984), no. 5, 531-534. MR 751827 · Zbl 0554.53014
[29] Joel Langer and David Singer, The total squared curvature of closed curves, J. Differential Geom. 20 (1984), no. 1, 1-22. MR 772124 · Zbl 0554.53013
[30] Peter Li and Shing Tung Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269-291. MR 674407 · Zbl 0503.53042
[31] Rainer Mandel, Explicit formulas and symmetry breaking for Willmore surfaces of revolution, ArXiv e-prints (2017). · Zbl 1402.53002
[32] Andrea Mondino and Huy The Nguyen, A gap theorem for Willmore tori and an application to the Willmore flow, Nonlinear Anal. 102 (2014), 220-225. MR 3182810 · Zbl 1286.53012
[33] John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63. MR 0075639 · Zbl 0070.38603
[34] Alexander Polden, Curves and surfaces of least total curvature and fourth-order flows, PhD Thesis, Tübingen (1996).
[35] Robert C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525-533. MR 0482597 · Zbl 0382.53038
[36] Daniel Howard Steinberg, Elastic curves in hyperbolic space, ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.)-Case Western Reserve University. MR 2693537
[37] Clifford Truesdell, The influence of elasticity on analysis: the classic heritage, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 3, 293-310. MR 714991 · Zbl 0555.73030
[38] Thomas J. Willmore, Riemannian Geometry, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xii+318 pp. ISBN: 0-19-853253-9. MR 1261641 · Zbl 0797.53002
[39] Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276-284. MR 1556973 · Zbl 0016.13804
[40] Eberhard Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. MR 1033498 · Zbl 0684.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.