zbMATH — the first resource for mathematics

The asymptotic average shadowing property and strong ergodicity. (English) Zbl 1339.37003
Summary: Let \(X\) be a compact metric space and \(f:X\to X\) be a continuous map. In this paper, we prove that if \(f\) has the asymptotic average shadowing property (Abbrev. AASP) and an invariant Borel probability measure with full support or the positive upper Banach density recurrent points of \(f\) are dense in \(X\), then for all \(n\geqslant 1,f\times f\times\cdots\times f\) (\(n\) times) and \(f^n\) are totally strongly ergodic. Moreover, we also give some sufficient conditions for an interval map having the AASP to be Li-Yorke chaotic.

37A25 Ergodicity, mixing, rates of mixing
37C50 Approximate trajectories (pseudotrajectories, shadowing, etc.) in smooth dynamics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI
[1] Bowen, R., Equilibrium states and the ergodic theory of axiom A diffeomorphisms, (1975), Springer NewYork, p. 68-87
[2] Walters, P., On the pseudo-orbit tracing property and its relationship to stability, Lect Notes Math, vol.668, (1978), Springer Berlin, p. 224-231
[3] Yang, R. S., The pseudo-orbit tracing property and chaos, Acta Math Sin, 39, 382-386, (1996), [in Chinese] · Zbl 0872.54032
[4] Yang, R. S., Pseudo-orbit tracing property and completely positive entropy, Acta Math Sin, 42, 99-104, (1999), [in Chinese] · Zbl 1014.54025
[5] Aoki, N.; Hiraide, K., Topological theory of dynamical systems. recent advances, North-Holland Mathematical Library, vol. 52, (1994), North-Holland Publishing Co. Amsterdam · Zbl 0798.54047
[6] Gu, R., The asymptotic average-shadowing property and transitivity, Nonlinear Anal, 67, 6, 1680-1689, (2007) · Zbl 1121.37011
[7] Gu, R., On ergodicity of systems with the asymptotic average shadowing property, Comput Math Appl, 55, 1137-1141, (2008) · Zbl 1163.37004
[8] Honary, B.; Zamani Bahabadi, A., Asymptotic average shadowing property on compact metric spaces, Nonlinear Anal, 69, 2857-2863, (2008) · Zbl 1152.54027
[9] Kulczycki, M.; Oprocha, P., Exploring the asymptotic average shadowing property, J Diff Equat Appl, 16, 10, 1131-1140, (2010) · Zbl 1205.54034
[10] Niu, Y. X., Dynamical systems with the asymptotic average shadowing property, Appl Math J Chinese Univ Ser A, 22, 4, 462-468, (2007), [in Chinese] · Zbl 1150.54037
[11] Niu, Y. X.; Su, S., On strong ergodicity and chaoticity of systems with the asymptotic average shadowing property, Chaos, Solitons Fractals, 44, 429-432, (2011) · Zbl 1225.37031
[12] Furstenberg, H., Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, (1981), Princeton University Press Princeton, NJ · Zbl 0459.28023
[13] Walters, Peter, An introduction to ergodic theory, (1982), Springer -Verlag New York, Heidelberg Berlin · Zbl 0475.28009
[14] Glasner, E.; Weiss, B., Locally equicontinuous dynamical systems, Colloq Math, 84-85, 345-361, (2000) · Zbl 0976.54044
[15] Huang, W.; Ye, X. D., Devaney’s chaos or 2-scattering implies Li-yorke’s chaos, Topol Appl, 117, 259-272, (2002) · Zbl 0997.54061
[16] Blanchard, F.; Glasner, E.; Koyada, S.; Maass, A., On Li-Yorke pairs, J Reine Angew Math, 547, 3, 51-68, (2002) · Zbl 1059.37006
[17] Akin, E.; Kolyada, S., Li-Yorke sensitivity, Nonlinearity, 16, 1421-1423, (2003) · Zbl 1045.37004
[18] Kuchta, M.; Smital, J., Two points scrambled set implies chaos, European Conference on Iteration Theory (ECIT 87), (1989), World Sci. Publishing Singapore, p. 427-430
[19] Fakhari, A.; Ghane, F., On shadowing: ordinary and ergodic, J Math Anal Appl, 364, 151-155, (2010) · Zbl 1293.37014
[20] Niu, Y. X., The average-shadowing property and strong ergodicity, J Math Anal Appl, 376, 528-534, (2011) · Zbl 1210.37016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.