×

Quantum random number generation. (English) Zbl 07216552

Kollmitzer, Christian (ed.) et al., Quantum random number generation. Theory and practice. Cham: Springer. Quantum Sci. Technol., 11-34 (2020).
Summary: The unpredictability of random numbers has found their applications in various fields such as lotteries, scientific simulations and fundamental physics tests. However, their most obvious application is in cryptographic protocols that inevitably include random number generators to generate seeds, initial random values, nonces (salts), blinding values and padding bytes. To be used for such tasks, number generators need to fulfil specific criteria to ensure the cryptographic protocol security performance. This primarily refers to the unpredictability of the generated numbers values even if the attacker knows the random number generator design. In contrast to deterministic random number generators that generate random values with entropy that is limited by the entropy of the initial seed, in this chapter we consider non-deterministic random number generators that rely on the quantum state of matter for generation of random numbers. Non-deterministic random number generators use various techniques such as radioactive decay, shot noise in semiconductors, photons and other.
For the entire collection see [Zbl 1443.65001].

MSC:

65Cxx Probabilistic methods, stochastic differential equations
94Axx Communication, information
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Pruneri, V., & Mitchell, M. W. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics express, 22(2), 1645-1654.
[2] Alliance, C. S. (2016). Quantum Random Number Generators.
[3] Bagini, V., & Bucci, M. (1999). A design of reliable true random number generator for cryptographic applications. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 204-218). Springer. · Zbl 0955.94008
[4] Bagini, V., & Bucci, M. (2007). A design of reliable true random number generator for cryptographic applications, pp. 204-218. · Zbl 0955.94008
[5] Bennet, A., Vértesi, T., Saunders, D. J., Brunner, N., & Pryde, G. J. (2014) Experimental semi-device-independent certification of entangled measurements. Physical Review Letters, 113(8), 80,405. https://doi.org/10.1103/PhysRevLett.113.080405. · doi:10.1103/PhysRevLett.113.080405
[6] Burri, S., Stucki, D., Maruyama, Y., Bruschini, C., Charbon, E., & Regazzoni, F. (2014). SPADs for quantum random number generators and beyond. In Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific (pp. 788-794). IEEE.
[7] Bustard, P. J., Moffatt, D., Lausten, R., Wu, G., Walmsley, I. A., & Sussman, B. J. (2011). Quantum random bit generation using stimulated Raman scattering. Optics Express, 19(25), 25173-25180. · doi:10.1364/OE.19.025173
[8] Chor, B., Goldreich, O., Hasted, J., Freidmann, J., Rudich, S., & Smolensky, R. (1985). The bit extraction problem or t-resilient functions. In 26th Annual Symposium on Foundations of Computer Science (pp. 396-407). IEEE.
[9] Collins, M. J., Clark, A., Yan, Z., Xiong, C., Steel, M. J., & Eggleton, B. J. (2014). Quantum random number generation using spontaneous raman scattering. In CLEO: QELS-Fundamental Science (pp. JTh2A-123). Optical Society of America.
[10] Collins, M. J., Clark, A. S., Xiong, C., Mägi, E., Steel, M. J., & Eggleton, B. J. (2015). Random number generation from spontaneous Raman scattering. Applied Physics Letters, 107(14), 141,112.
[11] Corporation, R. (1955). A million random digits with 100,000 normal deviates. Free Press. · Zbl 0068.12905
[12] Davies, R. B. (2002). Exclusive OR (XOR) and hardware random number generators. Retrieved May 31, 2013.
[13] Dynes, J. F., Yuan, Z. L., Sharpe, A. W., & Shields, A. J. (2008). A high speed, postprocessing free, quantum random number generator. Applied Physics Letters, 93(3), 31,109. https://doi.org/10.1063/1.2961000. · doi:10.1063/1.2961000
[14] England, D. G., Bustard, P. J., Moffatt, D. J., Nunn, J., Lausten, R., & Sussman, B. J. (2014). Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation. Applied Physics Letters, 104(5), 51,117.
[15] Friedman, H. (1949). Geiger counter tubes. Technical report., Naval Research Lab Washington DC.
[16] Fürst, H., Weier, H., Nauerth, S., Marangon, D. G., Kurtsiefer, C., & Weinfurter, H. (2010). High speed optical quantum random number generation. Optics Express, 18(12), 13029-13037. · doi:10.1364/OE.18.013029
[17] Gräfe, M., Heilmann, R., Perez-Leija, A., Keil, R., Dreisow, F., Heinrich, M., et al. (2014). On-chip generation of high-order single-photon W-states. Nature Photonics, 8(10), 791. · doi:10.1038/nphoton.2014.204
[18] Guang-Zhao, T., Mu-Sheng, J., Shi-Hai, S., Xiang-Chun, M., Chun-Yan, L., & Lin-Mei, L. (2013). Quantum random number generation based on quantum phase noise. Chinese Physics Letters, 30(11), 114,207.
[19] Guo, H., Tang, W., Liu, Y., Wei, W. (2010) Truly random number generation based on measurement of phase noise of a laser. Physical Review E, 81(5), 51,137.
[20] Haw, J. Y., Assad, S. M., Lance, A. M., Ng, N. H. Y., Sharma, V., Lam, P. K., & Symul, T. (2015). Maximization of extractable randomness in a quantum random-number generator. Physical Review Applied, 3(5), 54,004. https://doi.org/10.1103/PhysRevApplied.3.054004. · doi:10.1103/PhysRevApplied.3.054004
[21] Henry, C. (1982). Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 18(2), 259-264. · doi:10.1109/JQE.1982.1071522
[22] Herrero-Collantes, M., Garcia-Escartin, J. C. (2017). Quantum random number generators. Reviews of Modern Physics, 89(1). https://doi.org/10.1103/RevModPhys.89.015004. · doi:10.1103/RevModPhys.89.015004
[23] Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., et al. (2010). Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Optics Express, 18(6), 5512-5524. · doi:10.1364/OE.18.005512
[24] Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A., & Wien, A. (2000). A fast and compact quantum random number generator. Review of Scientific Instruments, 71(4), 1675-1680. · doi:10.1063/1.1150518
[25] Jun, B., & Kocher, P. (1999). The Intel random number generator. Cryptography Research Inc. White paper, 27, 1-8.
[26] Katsoprinakis, G. E., Polis, M., Tavernarakis, A., Dellis, A. T., Kominis, I. K. (2008). Quantum random number generator based on spin noise. Physical Review A, 77(5), 54,101.
[27] Li, X., Cohen, A. B., Murphy, T. E., & Roy, R. (2011). Scalable parallel physical random number generator based on a superluminescent LED. Optics Letters, 36(6), 1020-1022. · doi:10.1364/OL.36.001020
[28] Liu, Y., Zhu, M., Guo, H. (2010). Truly random number generation via entropy amplification. arXiv:1006.3512.
[29] Ma, H. Q., Xie, Y., & Wu, L. A. (2005). Random number generation based on the time of arrival of single photons. Applied Optics, 44(36), 7760-7763. · doi:10.1364/AO.44.007760
[30] Ma, X., Yuan, X., Cao, Z., B., Q., & Zhang, Z. (2016). Quantum random number generation. Nature.
[31] Marandi, A., Leindecker, N. C., Pervak, V., Byer, R. L., & Vodopyanov, K. L. (2012). Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Optics Express, 20(7), 7255-7262. · doi:10.1364/OE.20.007255
[32] Marandi, A., Leindecker, N. C., Vodopyanov, K. L., & Byer, R. L. (2012). All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. Optics Express, 20(17), 19322-19330. · doi:10.1364/OE.20.019322
[33] Martin, A., Sanguinetti, B., Lim, C. C. W., Houlmann, R., & Zbinden, H. (2015). Quantum random number generation for 1.25-GHz quantum key distribution systems. Journal of Lightwave Technology, 33(13), 2855-2859.
[34] Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Physical Review, 32(1), 110. · doi:10.1103/PhysRev.32.110
[35] Oestreich, M., Römer, M., Haug, R. J., & Hägele, D. (2005). Spin noise spectroscopy in GaAs. Physical Review Letters, 95(21), 216,603.
[36] Peres, Y. (2007). Iterating Von Neumann’s procedure for extracting random bits. The Annals of Statistics. https://doi.org/10.1214/aos/1176348543. · Zbl 0754.60040 · doi:10.1214/aos/1176348543
[37] Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T. A., et al. (2010). Random numbers certified by Bell’s theorem. Nature, 464(7291), 1021. · doi:10.1038/nature09008
[38] Qi, B., Chi, Y. M., Lo, H. K., & Qian, L. (2010). High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35(3), 312-314. · doi:10.1364/OL.35.000312
[39] Raymer, M. G., & Walmsley, I. A. (1990). The quantum coherence properties of stimulated Raman scattering. Progress in Optics, 28(C), 181-270. https://doi.org/10.1016/S0079-6638(08)70290-7. · doi:10.1016/S0079-6638(08)70290-7
[40] Reidler, I., Aviad, Y., Rosenbluh, M., & Kanter, I. (2009). Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Physical Review Letters, 103(2), 24,102.
[41] Ruhkin, A. (2011). Statistical testing of randomness: Old and new procedures. In Randomness through computation
[42] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va.
[43] Shaltiel, R. (2002). Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77(67-95), 10. · Zbl 1051.68070
[44] Shaltiel, R. (2008). How to get more mileage from randomness extractors. Random Structures & Algorithms, 33(2), 157-186. · Zbl 1181.68170 · doi:10.1002/rsa.20207
[45] Shen, Y., Tian, L., & Zou, H. (2010). Practical quantum random number generator based on measuring the shot noise of vacuum states. Physical Review A, 81(6), 063,814. https://doi.org/10.1103/PhysRevA.81.063814. · doi:10.1103/PhysRevA.81.063814
[46] Sigwart, J. D., Sutton, M. D., & Bennett, K. D. (2018). How big is a genus? Towards a nomothetic systematics. Zoological Journal of the Linnean Society, 183(2), 237-252. https://doi.org/10.1093/zoolinnean/zlx059. · doi:10.1093/zoolinnean/zlx059
[47] Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., & Zbinden, H. (2000). Optical quantum random number generator. Journal of Modern Optics, 47(4), 595-598. https://doi.org/10.1080/09500340008233380. · doi:10.1080/09500340008233380
[48] Stich, D., Zhou, J., Korn, T., Schulz, R., Schuh, D., Wegscheider, W. et al. (2007). Effect of initial spin polarization on spin dephasing and the electron g factor in a high-mobility two-dimensional electron system. Physical Review Letters, 98(17), 176,401.
[49] Stipcevic, M. (2012). Quantum random number generators and their applications in cryptography. 8375, 837,504-837,504-15. arXiv:quant-ph. arXiv:1103.4381. https://doi.org/10.1117/12.919920. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5967293&isnumber=5967009 · doi:10.1117/12.919920
[50] Stipcevic, M. (2014). Open problems in mathematics and computational science. https://doi.org/10.1007/978-3-319-10683-0. · Zbl 1314.00108 · doi:10.1007/978-3-319-10683-0
[51] Stipčević, M., & Rogina, B. M. (2007). Quantum random number generator based on photonic emission in semiconductors. Review of Scientific Instruments, 78(4), 45,104.
[52] Stipčević, M., & Ursin, R. (2015) An on-demand optical quantum random number generator with in-future action and ultra-fast response. Scientific Reports, 5, 10,214.
[53] Stucki, D., Burri, S., Charbon, E., Chunnilall, C., Meneghetti, A., & Regazzoni, F. (2013). Towards a high-speed quantum random number generator. In Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X (Vol. 8899, p. 88990R). International Society for Optics and Photonics.
[54] Sunada, S., Harayama, T., Arai, K., Yoshimura, K., Tsuzuki, K., Uchida, A., et al. (2011). Random optical pulse generation with bistable semiconductor ring lasers. Optics Express, 19(8), 7439-7450. · doi:10.1364/OE.19.007439
[55] Sunar, B., Martin, W. J., & Stinson, D. R. (2007). A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers, 56(1). · Zbl 1391.94799
[56] Symul, T., Assad, S. M., & Lam, P. K. (2011). Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters, 98(23), 231,103. https://doi.org/10.1063/1.3597793. · doi:10.1063/1.3597793
[57] Symul, T., Assad, S. M., & Lam, P. K. (2011). Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters, 98(231103), 1-3.
[58] Taylor, G., & Cox, G. (2011). Behind Intel’s new random-number generator. IEEE Spectrum, 24.
[59] Tisa, S., Villa, F., Giudice, A., Simmerle, G., & Zappa, F. (2015). High-speed quantum random number generation using CMOS photon counting detectors. IEEE Journal of Selected Topics in Quantum Electronics, 21(3), 23-29. · doi:10.1109/JSTQE.2014.2375132
[60] Vartsky, D., Bar, D., Gilad, P., & Schon, A. (2011) High-speed, true random-number generator.
[61] Von Neumann, J. (1951). Various techniques used in connection with random digits. National Bureauof Standards Applied Mathematics. DOI citeulike-article-id:10404544.
[62] Wahl, M., Leifgen, M., Berlin, M., Röhlicke, T., Rahn, H. J., & Beson, O. (2011). An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters, 98(17).
[63] Wang, A. B., Wang, Y. C., & Wang, J. F. (2009). Route to broadband chaos in a chaotic laser diode subject to optical injection. Optics Letters, 34(8), 1144-1146. · doi:10.1364/OL.34.001144
[64] Wayne, M. A., Jeffrey, E. R., Akselrod, G. M., & Kwiat, P. G. (2009). Photon arrival time quantum random number generation. Journal of Modern Optics, 56(4), 516-522. · Zbl 1169.81321 · doi:10.1080/09500340802553244
[65] Wilber, S. A. (2013). Entropy analysis and system design for quantum random number generators in CMOS integrated circuits.
[66] Williams, C. R. S., Salevan, J. C., Li, X., Roy, R., & Murphy, T. E. (2010). Fast physical random number generator using amplified spontaneous emission. Optics Express, 18(23), 23584-23597. · doi:10.1364/OE.18.023584
[67] Wu, L. A., Kimble, H. J., Hall, J. L., & Wu, H. (1986). Generation of squeezed states by parametric downconversion. Physical Review Letters, 57(20), 2520.
[68] Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., & Lo, H. K. (2012). Ultrafast quantum random number generation based on quantum phase fluctuations. Optics Express, 20(11), 12366-12377. · doi:10.1364/OE.20.012366
[69] Yan, Q., Zhao, B., Liao, Q., & Zhou, N. (2014). Multi-bit quantum random number generation by measuringpositions of arrival photons. Review of Scientific Instruments, 85(10). https://doi.org/10.1063/1.4897485. · doi:10.1063/1.4897485
[70] Yu, L. M., Yang, M. J., Wang, P. X., & Kawata, S. (2014). Note: A sampling method for quantum randombit generation. Review of Scientific Instruments, 046107(2010), 2008-2011 (2014). https://doi.org/10.1063/1.3397179. · doi:10.1063/1.3397179
[71] Zheng, J., & Zheng, C. (2017). Stationary randomness of quantum cryptographic sequences on variant maps. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, ASONAM ’17 (pp. 1041-1048). ACM, New York, USA. https://doi.org/10.1145/3110025.3110151. · doi:10.1145/3110025.3110151
[72] Zhou, H.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.