×

Quasiconformal homeomorphisms and dynamics. III: The Teichmüller space of a holomorphic dynamical system. (English) Zbl 0926.30028

[For part II see D. Sullivan in Acta Math. 155, 243-260 (1985; Zbl 0606.30044).]
This paper is an expanded version of a preprint from 1983 by D. Sullivan with the same title. The goal of the paper is to explicate and complete the foundational material required to use the method of quasiconformal maps to study holomorphic dynamical systems in one variable. It achieves that goal while at the same time giving a very nice overview of the remarkable advances achieved in this subject in the intervening 15 years. While not completely self contained, it is certainly accesible to a reader with a basic knowledge of functions of a complex variable as well as the vocabulary of holomorphic dynamical systems. Let \(f:\widehat{\mathbb C}\to\widehat{\mathbb C}\) be a rational map. A rational map defines, by iteration a dynamical system on the Riemann sphere. Evidently maps which are conjugate, by a homeomorphism have qualitatively identical dynamics. In order to understand the dynamics of such maps the authors consider when two such maps are quasiconformally conjugate. Motivated by the deformation theory of Riemann surfaces, they go on to construct a Teichmüller space consisting of “marked” quasiconformal conjugacy classes of rational maps. The dynamics of \(f\) divide the sphere into a compact, usually fractal set \(J\), the Julia set, on which the dynamics are quite chaotic and its complement \(\Omega\), the Fatou set consisting of countably many stable regions each of which is eventually periodic under forward iteration. The first result proved in the paper is the classification of the stable regions into five types: parabolic, attractive and superattractive basins, Siegel disks and Herman rings. The authors then give a very general definition of a Teichmüller space, modular group and (pre)metric for a holomorphic dynamical system. They quickly review the more classical case of a Kleinian group before considering the Teichmüller space of a rational map. They prove that the Teichmüller space of a rational map is a finite dimensional complex orbifold, naturally describable as a product of three dynamically defined factors. Using this result they compute the number of moduli for the quasiconformal equivalence class of a rational map and give a new proof of the ”No wandering domains theorem:” There does not exist a component \(\Omega_0\) of the Fatou set such that the forward iterates \(\{f^i(\Omega_0)\}\) are disjoint. This section closes with a proof of the discreteness of the modular group. The next topic considered is the density of “stable parameters”. Here one considers a holomorphic family \(\{f_\lambda(z)\}\) of rational maps parametrized by a complex manifold \(X.\) A parameter \(\alpha\in X\) is stable if there is an open set \(U\subset X\) containing \(\alpha\) such that for every \(\beta\in U\) the map \(f_\beta\) is conjugate to \(f_\alpha.\) Different types of stability (topological, quasiconformal, etc.) are obtained by requiring the conjugacy to have different types of regularity (continuous, quasiconformal, etc.). They prove that in any holomorphic family of rational maps the topologically stable parameters are open and dense and that various notions of stability are equivalent. These results are proved using the “extensions of holomorphic motions” provided by the “Harmonic \(\lambda\)-Lemma”. A rational map is called hyperbolic if \(| f'(z)| >1\) for all \(z\) in the Julia set. A central outstanding problem in the subject is the conjecture that hyperbolic maps are an open and dense subset among all rational maps of a given degree. The final result in the paper shows that this conjecture follows from the “No invariant line fields” conjecture: A rational map \(f\) carries no invariant line fields on its Julia set, except when \(f\) is double covered by an integral torus endomorphism. In the final section of the paper the results in the previous sections are applied to the case of quadratic polynomials.

MSC:

30F60 Teichmüller theory for Riemann surfaces
37F30 Quasiconformal methods and Teichmüller theory, etc. (dynamical systems) (MSC2010)
30C62 Quasiconformal mappings in the complex plane
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable

Citations:

Zbl 0606.30044
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ahlfors, L., Finitely generated Kleinian groups, Amer. J. Math., 86, 413-429 (1964) · Zbl 0133.04201
[2] Ahlfors, L., Conformal Invariants: Topics in Geometric Function Theory (1973), Mc Graw-Hill: Mc Graw-Hill New York · Zbl 0272.30012
[3] Baker, I. N.; Kotus, J.; Yinian, Lü., Iterates of meromorphic functions IV: Critically finite functions, Res. Math., 22, 651-656 (1992) · Zbl 0774.30024
[4] Beardon, A., Iteration of Rational Functions (1991), Springer-Verlag: Springer-Verlag Berlin/New York
[5] Bers, L., Inequalities for finitely generated Kleinian groups, J. d ’Analyse Math., 18, 23-41 (1967) · Zbl 0146.31601
[6] Bers, L., On Sullivan’s proof of the finiteness theorem and the eventual periodicity theorem, Am. J. Math., 109, 833-852 (1987) · Zbl 0632.30025
[7] Bers, L.; Royden, H. N., Holomorphic families of injections, Acta Math., 157, 259-286 (1986) · Zbl 0619.30027
[8] Blanchard, P.; Devaney, R.; Keen, L., The dynamics of complex polynomials and automorphisms of the shift, Inv. Math., 104, 545-580 (1991) · Zbl 0729.58025
[9] Branner, B., Cubic polynomials: turning around the connectedness locus, Topological Methods in Modern Mathematics (1993), Publish or Perish, Inc, p. 391-427 · Zbl 0801.58024
[10] Branner, B.; Hubbard, J. H., The iteration of cubic polynomials, Part II: Patterns and parapatterns, Acta. Math., 169, 229-325 (1992) · Zbl 0812.30008
[11] Carleson, L.; Gamelin, T., Complex Dynamics (1993), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0782.30022
[12] Curry, J.; Garnett, L.; Sullivan, D., On the iteration of a rational function: Computer experiments with Newton’s method, Comm. Math. Phys., 91, 267-277 (1983) · Zbl 0524.65032
[13] Douady, A., Systèmes dynamiques holomorphes, Astérisque, 105-106, 39-64 (1983) · Zbl 0532.30019
[14] Douady, A.; Hubbard, J., Étude Dynamique des Polynômes Complexes (1984), Pub. Math. d’Orsay · Zbl 0552.30018
[15] Douady, A.; Hubbard, J., On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18, 287-344 (1985) · Zbl 0587.30028
[16] Earle, C.; McMullen, C., Quasiconformal isotopies, Holomorphic Functions and Moduli I (1988), Springer-VerlagMSRI Publ: Springer-VerlagMSRI Publ Berlin/New York, p. 143-154 · Zbl 0659.30018
[17] Fatou, P., Sur les équations fonctionnelles; (Troisième mémoire), Bull. Sci. Math., 48, 208-314 (1920)
[18] Gardiner, F., Teichmüller Theory and Quadratic Differentials (1987), Wiley-Interscience: Wiley-Interscience New York · Zbl 0629.30002
[19] Goldberg, L. R.; Keen, L., The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, Invent. Math., 101, 335-372 (1990) · Zbl 0715.58018
[20] Greenberg, L., On a theorem of Ahlfors and conjugate subgroups of Kleinian groups, Amer. J. Math., 89, 56-68 (1967) · Zbl 0154.33605
[21] Gunning, R., Introduction to Holomorphic Functions of Several Comples Variables (1990), Wadsworth: Wadsworth Belmont
[22] Herman, M., Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann, Bull. Soc. Math. France, 112, 93-142 (1984) · Zbl 0559.58020
[23] Imayoshi, Y.; Taniguchi, M., An Introduction to Teichmüller Spaces (1992), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0754.30001
[24] Kra, I., Deformation spaces, A Crash Course on Kleinian Groups. A Crash Course on Kleinian Groups, Lecture Notes in Math., 400 (1974), Springer-Verlag: Springer-Verlag Berlin/New York, p. 48-70
[25] Lattès, S., Sur l’itération des substitutions rationnelles et les fonctions de Poincaré, C. R. Acad. Sci. Paris, 166, 26-28 (1918) · JFM 46.0522.01
[26] Lehto, O.; Virtanen, K. J., Quasiconformal Mappings in the Plane (1973), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0267.30016
[27] Lyubich, M., An analysis of the stability of the dynamics of rational functions, Selecta Math. Sov., 9, 69-90 (1990) · Zbl 0697.30026
[28] Mandelbrot, B., Fractal aspects of the iteration \(z λz zλz\), Ann. New York Acad. Sci., 357, 249-259 (1980) · Zbl 0478.58017
[29] Mañé, R., On the instability of Herman rings, Invent. Math., 81, 459-471 (1985) · Zbl 0595.30032
[30] Mañé, R.; Sad, P.; Sullivan, D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup., 16, 193-217 (1983) · Zbl 0524.58025
[31] McMullen, C., Automorphisms of rational maps, Holomorphic Functions and Moduli I (1988), Springer-Verlag: Springer-Verlag Berlin/New York, p. 31-60
[32] McMullen, C., Braiding of the attractor and the failure of iterative algorithms, Invent. Math., 91, 259-272 (1988) · Zbl 0654.58023
[33] McMullen, C., Complex Dynamics and Renormalization. Complex Dynamics and Renormalization, Annals of Math Studies, 135 (1994), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0822.30002
[34] McMullen, C., Frontiers in complex dynamics, Bull. Amer. Math. Soc., 31, 155-172 (1994) · Zbl 0807.30013
[35] Montel, P., Familles Normales (1927), Gauthiers-Villars: Gauthiers-Villars Paris · JFM 53.0303.02
[36] Nag, S., The Complex Analytic Theory of Teichmüller Space (1988), Wiley: Wiley New York · Zbl 0667.30040
[37] Rees, M., Positive measure sets of ergodic rational maps, Ann. Sci. École Norm. Sup., 19, 383-407 (1986) · Zbl 0611.58038
[38] Rees, M., Components of degree two hyperbolic rational maps, Invent. Math., 100, 357-382 (1990) · Zbl 0712.30022
[39] Shishikura, M., On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup., 20, 1-30 (1987) · Zbl 0621.58030
[40] Slodkowski, Z., Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., 111, 347-355 (1991) · Zbl 0741.32009
[41] Sullivan, D., A finiteness theorem for cusps, Acta Math., 147, 289-299 (1981) · Zbl 0502.57004
[42] Sullivan, D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference. Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Annals of Math. Studies, 97 (1981), Princeton · Zbl 0567.58015
[43] Sullivan, D., Conformal dynamical systems, Geometric Dynamics. Geometric Dynamics, Lecture Notes, 1007 (1983), Springer-Verlag: Springer-Verlag Berlin/New York, p. 725-752
[44] Sullivan, D., Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains, Ann. Math., 122, 401-418 (1985) · Zbl 0589.30022
[45] Sullivan, D., Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math., 155, 243-260 (1985) · Zbl 0606.30044
[46] D. Sullivan, Quasiconformal homeomorphisms and dynamics III: the Teichmüller space of a holomorphic dynamical system, 1983; D. Sullivan, Quasiconformal homeomorphisms and dynamics III: the Teichmüller space of a holomorphic dynamical system, 1983
[47] Sullivan, D.; Thurston, W. P., Extending holomorphic motions, Acta Math., 157, 243-258 (1986) · Zbl 0619.30026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.