×

zbMATH — the first resource for mathematics

Anomalous pressure drop behaviour of mixed kinematics flows of viscoelastic polymer solutions: a multiscale simulation approach. (English) Zbl 1181.76022
Summary: A long-standing unresolved problem in non-Newtonian fluid mechanics, namely, the relationship between friction drag and flow rate in inertialess complex kinematics flows of dilute polymeric solutions is investigated via self-consistent multiscale flow simulations. Specifically, flow of a highly elastic dilute polymeric solution, described by first principles micromechanical models, through a 4:1:4 axisymmetric contraction and expansion geometry is examined utilizing our recently developed highly efficient multiscale flow simulation algorithm A. Koppol, R. Sureshkumar and B. Khomami [J. Non-Newtonian Fluid Mech. 141, 180 (2007)]. Comparison with experimental measurements [J. P. Rothstein and H. G. McKinley [J. Non-Newtonian Fluid Mech. 86, 61-88 (1999; Zbl 0947.76505)] shows that the pressure drop evolution as a function of flow rate can be accurately predicted when the chain dynamics is described by multi-segment bead-spring micromechanical models that closely capture the transient extensional viscosity of the experimental fluid. Specifically, for the first time the experimentally observed doubling of the dimensionless excess pressure drop at intermediate flow rates is predicted. Moreover, based on an energy dissipation analysis it has been shown that the variation of the excess pressure drop with the flow rate is controlled by the flow-microstructure coupling in the extensional flow dominated region of the flow. Finally, the influence of the macromolecular chain extensibility on the vortex dynamics, i.e. growth of the upstream corner vortex at low chain extensibility or the shrinkage of the upstream corner vortex coupled with the formation of a lip vortex that eventually merges with the upstream corner vortex at high chain extensibility is elucidated.

MSC:
76A10 Viscoelastic fluids
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.jnnfm.2007.07.009 · Zbl 1195.76101 · doi:10.1016/j.jnnfm.2007.07.009
[2] DOI: 10.1016/S0377-0257(96)01547-9 · doi:10.1016/S0377-0257(96)01547-9
[3] DOI: 10.1122/1.550517 · doi:10.1122/1.550517
[4] DOI: 10.1016/S0377-0257(97)00033-5 · doi:10.1016/S0377-0257(97)00033-5
[5] DOI: 10.1016/0377-0257(90)85058-7 · doi:10.1016/0377-0257(90)85058-7
[6] DOI: 10.1146/annurev.fl.19.010187.001105 · doi:10.1146/annurev.fl.19.010187.001105
[7] DOI: 10.1017/S0022112091001489 · doi:10.1017/S0022112091001489
[8] Bird, Dynamics of Polymeric Liquids (1987)
[9] DOI: 10.1016/S0377-0257(99)00094-4 · Zbl 0977.76527 · doi:10.1016/S0377-0257(99)00094-4
[10] DOI: 10.1016/0377-0257(88)85026-2 · doi:10.1016/0377-0257(88)85026-2
[11] DOI: 10.1016/S0377-0257(97)00058-X · Zbl 0941.76541 · doi:10.1016/S0377-0257(97)00058-X
[12] DOI: 10.1016/j.jnnfm.2006.03.006 · Zbl 1195.76083 · doi:10.1016/j.jnnfm.2006.03.006
[13] DOI: 10.1016/S0377-0257(02)00137-4 · Zbl 1143.76479 · doi:10.1016/S0377-0257(02)00137-4
[14] DOI: 10.1016/j.jnnfm.2006.04.009 · Zbl 1143.76318 · doi:10.1016/j.jnnfm.2006.04.009
[15] DOI: 10.1016/0377-0257(86)80015-5 · doi:10.1016/0377-0257(86)80015-5
[16] DOI: 10.1016/j.jnnfm.2004.01.022 · Zbl 1143.76314 · doi:10.1016/j.jnnfm.2004.01.022
[17] DOI: 10.1002/aic.690430404 · doi:10.1002/aic.690430404
[18] DOI: 10.1122/1.1289279 · doi:10.1122/1.1289279
[19] DOI: 10.1016/0377-0257(93)80042-A · Zbl 0774.76012 · doi:10.1016/0377-0257(93)80042-A
[20] DOI: 10.1122/1.1835336 · doi:10.1122/1.1835336
[21] DOI: 10.1016/j.jnnfm.2006.10.003 · Zbl 1195.76031 · doi:10.1016/j.jnnfm.2006.10.003
[22] DOI: 10.1016/S0377-0257(98)00174-8 · Zbl 0973.76539 · doi:10.1016/S0377-0257(98)00174-8
[23] DOI: 10.1122/1.550060 · Zbl 0674.76005 · doi:10.1122/1.550060
[24] DOI: 10.1016/j.jnnfm.2005.04.007 · Zbl 1195.76257 · doi:10.1016/j.jnnfm.2005.04.007
[25] DOI: 10.1016/S0377-0257(99)00095-6 · Zbl 0972.76081 · doi:10.1016/S0377-0257(99)00095-6
[26] DOI: 10.1122/1.550514 · doi:10.1122/1.550514
[27] DOI: 10.1122/1.550370 · doi:10.1122/1.550370
[28] Keunings, Rheology Reviews pp 67– (2004)
[29] DOI: 10.1016/0377-0257(94)85026-7 · doi:10.1016/0377-0257(94)85026-7
[30] DOI: 10.1016/0377-0257(93)85045-C · Zbl 0775.76115 · doi:10.1016/0377-0257(93)85045-C
[31] DOI: 10.1016/S0377-0257(97)00023-2 · doi:10.1016/S0377-0257(97)00023-2
[32] DOI: 10.1016/0377-0257(90)85064-6 · doi:10.1016/0377-0257(90)85064-6
[33] Szabo, Finite Element Analysis (1987)
[34] DOI: 10.1016/S0377-0257(96)01503-0 · doi:10.1016/S0377-0257(96)01503-0
[35] DOI: 10.1016/S0377-0257(02)00132-5 · Zbl 1143.76370 · doi:10.1016/S0377-0257(02)00132-5
[36] DOI: 10.1122/1.550960 · doi:10.1122/1.550960
[37] DOI: 10.1063/1.1369126 · Zbl 1184.76520 · doi:10.1063/1.1369126
[38] DOI: 10.1016/S0377-0257(00)00115-4 · Zbl 0990.76019 · doi:10.1016/S0377-0257(00)00115-4
[39] DOI: 10.1016/j.jnnfm.2005.03.005 · Zbl 1187.76685 · doi:10.1016/j.jnnfm.2005.03.005
[40] Happel, Low Reynolds Number Hydrodynamics (1965)
[41] DOI: 10.1016/S0377-0257(00)00124-5 · Zbl 0990.76047 · doi:10.1016/S0377-0257(00)00124-5
[42] DOI: 10.1016/S0377-0257(98)00123-2 · Zbl 0957.76066 · doi:10.1016/S0377-0257(98)00123-2
[43] DOI: 10.1016/j.jnnfm.2005.05.011 · doi:10.1016/j.jnnfm.2005.05.011
[44] DOI: 10.1016/0377-0257(95)01372-3 · doi:10.1016/0377-0257(95)01372-3
[45] DOI: 10.1122/1.1516788 · doi:10.1122/1.1516788
[46] DOI: 10.1016/S0377-0257(99)00015-4 · Zbl 1073.76584 · doi:10.1016/S0377-0257(99)00015-4
[47] DOI: 10.1016/S0377-0257(01)00094-5 · Zbl 0963.76521 · doi:10.1016/S0377-0257(01)00094-5
[48] DOI: 10.1016/0377-0257(82)85014-3 · doi:10.1016/0377-0257(82)85014-3
[49] DOI: 10.1016/S0377-0257(98)00202-X · Zbl 0947.76505 · doi:10.1016/S0377-0257(98)00202-X
[50] DOI: 10.1002/pen.760120111 · doi:10.1002/pen.760120111
[51] DOI: 10.1016/S0377-0257(96)01506-6 · doi:10.1016/S0377-0257(96)01506-6
[52] DOI: 10.1016/0377-0257(92)80008-L · Zbl 0825.76451 · doi:10.1016/0377-0257(92)80008-L
[53] DOI: 10.1016/j.jnnfm.2003.10.001 · Zbl 1072.76008 · doi:10.1016/j.jnnfm.2003.10.001
[54] DOI: 10.1016/0377-0257(92)85005-H · doi:10.1016/0377-0257(92)85005-H
[55] DOI: 10.1016/0377-0257(96)01446-2 · doi:10.1016/0377-0257(96)01446-2
[56] DOI: 10.1016/0045-7825(82)90071-8 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[57] DOI: 10.1016/j.jnnfm.2006.04.006 · Zbl 1195.76308 · doi:10.1016/j.jnnfm.2006.04.006
[58] DOI: 10.1016/S0377-0257(01)00186-0 · Zbl 1082.76501 · doi:10.1016/S0377-0257(01)00186-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.