×

zbMATH — the first resource for mathematics

Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. (English) Zbl 1175.76069
Summary: The effects of polymer stresses on near-wall turbulent structures are examined by using direct numerical simulation of fully developed turbulent channel flows with and without polymer stress. The Reynolds number based on friction velocity and half-channel height is 395, and the stresses created by adding polymer are modelled by a finite extensible nonlinear elastic, dumbbell model. Both low- (18%) and high-drag reduction (61%) cases are investigated. Linear stochastic estimation is employed to compute the conditional averages of the near-wall eddies. The conditionally averaged flow fields for Reynolds-stress-maximizing Q2 events show that the near-wall vortical structures are weakened and elongated in the streamwise direction by polymer stresses in a manner similar to that found by P. A. Stone et al. [Phys. Fluids 3470–3782 (2004)] for low-Reynolds-number quasi-streamwise vortices (‘exact coherent states: ECS’). The conditionally averaged fields for the events with large contribution to the polymer work are also examined. The vortical structures in drag-reduced turbulence are very similar to those for the Q2 events, i.e. counter-rotating streamwise vortices near the wall and hairpin vortices above the buffer layer. The three-dimensional distributions of conditionally averaged polymer force around these vortical structures show that the polymer force components oppose the vortical motion. More fundamentally, the torques due to polymer stress are shown to oppose the rotation of the vortices, thereby accounting for their weakening. The observations also extend concepts of the vortex retardation by viscoelastic counter-torques to the heads of hairpins above the buffer layer, and offer an explanation of the mechanism of drag reduction in the outer region of wall turbulence, as well as in the buffer layer.

MSC:
76F10 Shear flows and turbulence
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112067001442 · doi:10.1017/S0022112067001442
[2] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[3] De, Phys. Rev. 67 pp 056312– (2003)
[4] DOI: 10.1017/S0022112004008250 · Zbl 1116.76313 · doi:10.1017/S0022112004008250
[5] DOI: 10.1017/S0022112094000431 · Zbl 0800.76191 · doi:10.1017/S0022112094000431
[6] DOI: 10.1017/S0022112093002575 · Zbl 0800.76296 · doi:10.1017/S0022112093002575
[7] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[8] DOI: 10.1017/S0022112005004726 · Zbl 1071.76015 · doi:10.1017/S0022112005004726
[9] DOI: 10.1103/PhysRevLett.89.208301 · doi:10.1103/PhysRevLett.89.208301
[10] DOI: 10.1063/1.858666 · Zbl 0800.76195 · doi:10.1063/1.858666
[11] DOI: 10.1063/1.1775192 · Zbl 1187.76502 · doi:10.1063/1.1775192
[12] DOI: 10.1017/S0022112005007950 · Zbl 1085.76004 · doi:10.1017/S0022112005007950
[13] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005 · doi:10.1017/S0022112099007818
[14] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[15] DOI: 10.1103/PhysRevLett.97.234501 · doi:10.1103/PhysRevLett.97.234501
[16] DOI: 10.1063/1.857411 · doi:10.1063/1.857411
[17] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[18] DOI: 10.1023/A:1017985826227 · Zbl 1094.76506 · doi:10.1023/A:1017985826227
[19] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580 · doi:10.1017/S0022112003005305
[20] DOI: 10.1016/0032-3861(61)90029-5 · doi:10.1016/0032-3861(61)90029-5
[21] DOI: 10.1063/1.861722 · doi:10.1063/1.861722
[22] DOI: 10.1088/1367-2630/6/1/056 · doi:10.1088/1367-2630/6/1/056
[23] DOI: 10.1017/S0022112003004610 · Zbl 1054.76041 · doi:10.1017/S0022112003004610
[24] DOI: 10.1017/S0022112003005597 · Zbl 1063.76579 · doi:10.1017/S0022112003005597
[25] DOI: 10.1103/PhysRevLett.92.244503 · doi:10.1103/PhysRevLett.92.244503
[26] DOI: 10.1063/1.869715 · doi:10.1063/1.869715
[27] DOI: 10.1017/S0022112006002138 · Zbl 1177.76169 · doi:10.1017/S0022112006002138
[28] DOI: 10.1016/j.jnnfm.2005.12.012 · Zbl 1143.76337 · doi:10.1016/j.jnnfm.2005.12.012
[29] DOI: 10.1063/1.1850920 · Zbl 1187.76219 · doi:10.1063/1.1850920
[30] DOI: 10.1002/aic.10465 · doi:10.1002/aic.10465
[31] DOI: 10.1017/S0022112002003270 · Zbl 1032.76500 · doi:10.1017/S0022112002003270
[32] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[33] DOI: 10.1017/S0022112004000291 · Zbl 1067.76052 · doi:10.1017/S0022112004000291
[34] DOI: 10.1063/1.866278 · doi:10.1063/1.866278
[35] DOI: 10.1007/s10494-005-9002-6 · Zbl 1200.76106 · doi:10.1007/s10494-005-9002-6
[36] DOI: 10.1007/s00348-003-0630-0 · doi:10.1007/s00348-003-0630-0
[37] DOI: 10.1063/1.1345882 · Zbl 1184.76137 · doi:10.1063/1.1345882
[38] DOI: 10.1017/S0022112092000600 · doi:10.1017/S0022112092000600
[39] DOI: 10.1016/S0377-0257(98)00115-3 · Zbl 0960.76057 · doi:10.1016/S0377-0257(98)00115-3
[40] DOI: 10.1007/s003480050371 · doi:10.1007/s003480050371
[41] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556 · doi:10.1016/S0045-7930(01)00069-X
[42] DOI: 10.1007/s003480100288 · doi:10.1007/s003480100288
[43] DOI: 10.1017/S0022112071000120 · doi:10.1017/S0022112071000120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.