×

Quantum fate of timelike naked singularity with scalar hair. (English) Zbl 1435.83057

Summary: We study the quantum fate of a naked curvature singularity sourced by a scalar field via several methods and compare the results obtained. The first method relies on relativistic quantum mechanics on a fixed background employing the Klein-Gordon and the Dirac equations for a static spacetime. We show that both the Klein-Gordon and the Dirac particles feel this singularity therefore this method does not provide its resolution. For comparison, we subsequently employ methods for quantizing the geometry itself. We selected the canonical quantization via conditional symmetries and as a last approach we use a maximal acceleration derivation in the covariant loop quantum gravity. In both of these approaches the singularity is resolved at the quantum level. We discuss these conflicting results bearing in mind that quantum particles probe classical geometry in the first approach while the last two methods quantize the geometry itself.

MSC:

83C45 Quantization of the gravitational field
83C75 Space-time singularities, cosmic censorship, etc.
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81S08 Canonical quantization
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chase, J. E., Comm. Math. Phys., 19, 4, 276-288 (1970) · Zbl 0202.27702
[2] Tafel, J., Gen. Relativity Gravitation. Gen. Relativity Gravitation, Gen. Rel. Grav., 46, 1645 (2014) · Zbl 1286.83028
[3] Tahamtan, T.; Svitek, O., Phys. Rev. D, 91, 10, Article 104032 pp. (2015)
[4] Tahamtan, T.; Svitek, O., Phys. Rev. D, 94, 6, Article 064031 pp. (2016)
[5] Janis, A. I.; Newman, E. T.; Winicour, J., Phys. Rev. Lett., 20, 878-880 (1968)
[6] Wyman, M., Phys. Rev. D, 24, 839-841 (1981)
[7] Fisher, I. Z., Zh. Eksp. Teor. Fiz., 18, 636-640 (1948)
[8] Janis, A. I.; Robinson, D. C.; Winicour, J., Phys. Rev., 186, 1729-1731 (1969)
[9] Wald, R. M., J. Math. Phys., 21, 2802-2805 (1980)
[10] Horowitz, G. T.; Marolf, D., Phys. Rev. D, 52, 5670-5675 (1995)
[11] Ishibashi, A.; Hosoya, A., Phys. Rev. D, 60, Article 104028 pp. (1999)
[12] Konkowski, D. A.; Helliwell, T. M., Gen. Relativity Gravitation, 33, 1131-1136 (2001) · Zbl 1169.83306
[13] Helliwell, T. M.; Konkowski, D. A.; Arndt, V., Gen. Relativity Gravitation, 35, 79-96 (2003) · Zbl 1021.83024
[14] Konkowski, D. A.; Helliwell, T. M., Selected Articles from the 8th Alexander Friedmann International Seminar on Gravitation and Cosmology and Satellite Symposium on the Casimir Effect: Rio de Janeiro, Brazil, May 30-June 3, 2011. Selected Articles from the 8th Alexander Friedmann International Seminar on Gravitation and Cosmology and Satellite Symposium on the Casimir Effect: Rio de Janeiro, Brazil, May 30-June 3, 2011, Internat. J. Modern Phys. A. Selected Articles from the 8th Alexander Friedmann International Seminar on Gravitation and Cosmology and Satellite Symposium on the Casimir Effect: Rio de Janeiro, Brazil, May 30-June 3, 2011. Selected Articles from the 8th Alexander Friedmann International Seminar on Gravitation and Cosmology and Satellite Symposium on the Casimir Effect: Rio de Janeiro, Brazil, May 30-June 3, 2011, Internat. J. Modern Phys. A, Int. J. Mod. Phys. Conf. Ser., 03, 364-3888 (2011), http://dx.doi.org/10.1142/S2010194511001462, http://dx.doi.org/10.1142/S0217751X11054334
[15] Pitelli, P. M.; Letelier, P. S., J. Math. Phys., 48, Article 092501 pp. (2007) · Zbl 1152.81581
[16] Pitelli, J. P.M.; Letelier, P. S., Phys. Rev. D, 77, Article 124030 pp. (2008)
[17] Pitelli, J. P.M.; Letelier, P. S., Phys. Rev. D, 80, Article 104035 pp. (2009)
[18] Tahamtan, T.; Gurtug, O., Eur. Phys. J. C, 72, 2091 (2012)
[19] Tahamtan, T.; Svitek, O., Eur. Phys. J. C, 74, 8, 2987 (2014)
[20] Bronstein, M. P., Gen. Relativity Gravitation, 44, 1, 267-283 (2012) · Zbl 1242.83037
[21] Bronstein, M. P., Zh. Eksp. Teor. Fiz., 6, 195 (1936) · Zbl 0014.08708
[22] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity, Cambridge Monographs on Mathematical Physics (2014), Cambridge University Press
[23] Kuchar, K., J. Math. Phys., 23, 1647-1661 (1982)
[24] Christodoulakis, T.; Dimakis, N.; Terzis, P. A.; Doulis, G.; Grammenos, T.; Melas, E.; Spanou, A., J. Geom. Phys., 71, 127-138 (2013) · Zbl 1283.83023
[25] Christodoulakis, T.; Dimakis, N.; Terzis, P. A.; Vakili, B.; Melas, E., Phys. Rev. D, 89, 4, Article 044031 pp. (2014)
[26] Christodoulakis, T.; Dimakis, N.; Terzis, P. A., J. Phys. A, 47, Article 095202 pp. (2014) · Zbl 1288.83005
[27] Zampeli, A.; Pailas, T.; Terzis, P. A.; Christodoulakis, T., J. Cosmol. Astropart. Phys., 1605, 05, 066 (2016)
[28] Dimakis, N.; Karagiorgos, A.; Pailas, T.; Terzis, P. A.; Christodoulakis, T., Phys. Rev. D, 95, 8, Article 086016 pp. (2017)
[29] Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, P. A.; Christodoulakis, T., J. Cosmol. Astropart. Phys., 1803, 03, 030 (2018)
[30] Christodoulakis, T.; Karagiorgos, A.; Zampeli, A., Symmetry, 10, 3 (2018), URLhttp://www.mdpi.com/2073-8994/10/3/70
[31] Perez, A., Living Rev. Rel., 16, 3 (2013) · Zbl 1320.83008
[32] Thiemann, T., Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics (2007), Cambridge University Press · Zbl 1129.83004
[33] Rovelli, C.; Smolin, L., Nuclear Phys. B. Nuclear Phys. B, Nucl. Phys.B, 456, 753-622 (1995), erratum
[34] Ashtekar, A.; Lewandowski, J., Classical Quantum Gravity, 14, A55-A82 (1997) · Zbl 0866.58077
[35] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. 2. Fourier Analysis, Selfadjointness (1975), Academic: Academic New York · Zbl 0308.47002
[36] Ronveaux, A.; Arscott, F., Heun’s Differential Equations, Oxford science publications (1995), Oxford University Press, URLhttps://books.google.cz/books?id=5p65FD8caCgC · Zbl 0847.34006
[37] Penrose, R.; Rindler, W., Spinors and Space-time. Vol. 2: Spinor and Twistor Methods in Space-time Geometry (1988), Cambridge University Press
[38] Chandrasekhar, S., The mathematical Theory of Black Holes (1998), Oxford: Oxford UK, Clarendon · Zbl 0912.53053
[39] Christodoulakis, T.; Korfiatis, E.; Papadopoulos, G., Comm. Math. Phys., 226, 377-391 (2002) · Zbl 1007.83050
[40] Zampeli, A., (Cacciatori, S.; Güneysu, B.; Pigola, S., Einstein Equations: Physical and Mathematical Aspects of General Relativity. Einstein Equations: Physical and Mathematical Aspects of General Relativity, Domoschool 2018 (2019), Springer International Publishing: Springer International Publishing Birkhäuser, Cham), 345-357
[41] Christodoulakis, T.; Zanelli, J., Nuovo Cim. B, 93, 1-21 (1986)
[42] Hartle, J. B., (Prediction in Quantum Cosmology. Prediction in Quantum Cosmology, NATO ASI Series (1987), Springer US), 329-360
[43] Bohm, D., Phys. Rev., 85, 166-179 (1952) · Zbl 0046.21004
[44] Bohm, D., Phys. Rev., 85, 180-193 (1952) · Zbl 0046.21004
[45] Rovelli, C.; Vidotto, F., Phys. Rev. Lett., 111, Article 091303 pp. (2013)
[46] Magueijo, J.; Smolin, L., Phys. Rev. Lett., 88, Article 190403 pp. (2002)
[47] Svitek, O.; Tahamtan, T., Gen. Relativity Gravitation, 48, 2, 22 (2016) · Zbl 1334.83055
[48] Černý, J., Canonical Quantization of Midisuperspace Models (2018), Charles University: Charles University Prague, 9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.