FlowPy – a numerical solver for functional renormalization group equations. (English) Zbl 1344.81016

Summary: FlowPy is a numerical toolbox for the solution of partial differential equations encountered in Functional Renormalization Group equations. This toolbox compiles flow equations to fast machine code and is able to handle coupled systems of flow equations with full momentum dependence, which furthermore may be given implicitly.


81-04 Software, source code, etc. for problems pertaining to quantum theory
81T17 Renormalization group methods applied to problems in quantum field theory


CrasyDSE; FlowPy
Full Text: DOI arXiv


[2] Aoki, K., Introduction to the nonperturbative renormalization group and its recent applications, Internat. J. Modern Phys. B, 14, 1249-1326 (2000) · Zbl 1219.81199
[3] Berges, Jurgen; Tetradis, Nikolaos; Wetterich, Christof, Non-perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rep., 363, 223-386 (2002) · Zbl 0994.81077
[4] Polonyi, Janos, Lectures on the functional renormalization group method, Cent. Eur. J. Phys., 1, 1-71 (2003)
[5] Pawlowski, Jan M., Aspects of the functional renormalisation group, Ann. Physics, 322, 2831-2915 (2007) · Zbl 1132.81041
[9] Bagnuls, C.; Bervillier, C., Exact renormalization group equations. An introductory review, Phys. Rep., 348, 91 (2001) · Zbl 0969.81596
[10] Synatschke, Franziska; Gies, Holger; Wipf, Andreas, Phase Diagram and Fixed-Point Structure of two dimensional \(N = 1\) Wess-Zumino Models, Phys. Rev., D80, 085007 (2009), arXiv:0907.4229 [hep-th]
[11] Synatschke, Franziska; Braun, Jens; Wipf, Andreas, \(N = 1\) Wess Zumino Model in \(d = 3\) at zero and finite temperature, Phys. Rev., D81, 125001 (2010), arXiv:1001.2399 [hep-th]
[12] Pawlowski, Jan M., The QCD phase diagram: results and challenges, AIP Conf. Proc., 1343, 75-80 (2011), arXiv:1012.5075 [hep-ph]
[13] Braun, Jens, Fermion interactions and universal behavior in strongly interacting theories, J. Phys. G, 39, 033001 (2012), 2011. arXiv:1108.4449 [hep-ph]
[14] Wetterich, Christof, Exact evolution equation for the effective potential, Phys. Lett., B301, 90-94 (1993)
[16] Synatschke, Franziska; Bergner, Georg; Gies, Holger; Wipf, Andreas, Flow equation for supersymmetric quantum mechanics, J. High Energy Phys., 03, 028 (2009), arXiv:0809.4396 [hep-th]
[17] Ellwanger, Ulrich; Hirsch, Manfred; Weber, Axel, Flow equations for the relevant part of the pure Yang-Mills action, Z. Phys., C69, 687-698 (1996)
[18] Pawlowski, Jan M.; Litim, Daniel F.; Nedelko, Sergei; von Smekal, Lorenz, Infrared behaviour and fixed points in Landau gauge QCD, Phys. Rev. Lett., 93, 152002 (2004)
[19] Fischer, Christian S.; Gies, Holger, Renormalization flow of Yang-Mills propagators, J. High Energy Phys., 10, 048 (2004)
[20] Fischer, Christian S.; Maas, Axel; Pawlowski, Jan M., On the infrared behavior of Landau gauge Yang-Mills theory, Ann. Physics, 324, 2408 (2009), arXiv:0810.1987 [hep-ph] · Zbl 1176.81082
[21] Blaizot, Jean-Paul; Mendez-Galain, Ramon; Wschebor, Nicolas, Non perturbative renormalization group and momentum dependence of \(n\)-point functions. II, Phys. Rev., E74, 051117 (2006) · Zbl 1247.81308
[22] Blaizot, Jean-Paul; Mendez-Galain, Ramon; Wschebor, Nicolas, Non perturbative renormalisation group and momentum dependence of \(n\)-point functions. I, Phys. Rev., E74, 051116 (2006) · Zbl 1247.81308
[23] Blaizot, J. P.; Galain, Ramon Mendez; Wschebor, Nicolas, A new method to solve the non perturbative renormalization group equations, Phys. Lett., B632, 571-578 (2006) · Zbl 1247.81308
[24] Benitez, F., Solutions of renormalization group flow equations with full momentum dependence, Phys. Rev., E80, 030103 (2009), arXiv:0901.0128 [cond-mat.stat-mech]
[25] Diehl, S.; Krahl, H. C.; Scherer, M., Three-body scattering from nonperturbative flow equations, Phys. Rev., C78, 034001 (2008), arXiv:0712.2846 [cond-mat.stat-mech]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.