×

Nonlinear orientational dynamics of a molecular chain. (English. Russian original) Zbl 1274.82068

Theor. Math. Phys. 168, No. 2, 1048-1063 (2011); translation from Teor. Mat. Fiz. 168, No. 2, 227-244 (2011).
Summary: We investigate the nonlinear rotational dynamics of a molecular chain with quadrupole interaction in both the discrete and the continuous cases. Based on a system of nonlinear differential-difference equations, we obtain approximate equations describing the chain excitations and preserving the initial symmetry. We introduce an effective potential and normal coordinates, using which allows decoupling the system into linear and nonlinear parts. As a result of a strong anisotropy of the potential, narrow “valleys” occur in the angle plane. Motion along a valley corresponds to a softer interaction (nonlinear equations). Linear equations describe motion across a valley (hard interaction). We consider cases where the derived nonlinear equations reduce to the sine-Gordon equation. We find integrals of motion and exact solutions of our approximate equations. We uniformly describe the energy interval encompassing the domains of order, of orientational melting, and of rotational motion of the molecules in the chain.

MSC:

82D25 Statistical mechanics of crystals
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J.-P. Farges, ed., Organic Conductors: Fundamentals and Applications, Dekker, New York (1994); G. Hadziioannou and P. F. van Hutten, eds., Semiconducting Polymers: Chemistry, Physics, and Engineering, Wiley, Weinheim (2005).
[2] V. G. Manzhelii and Yu. A. Freiman, Physics of Cryocrystals, AIP, New York (1996); B. I. Verkin and A. F. Prihot’ko, eds., Cryocrystals [in Russian], Naukova Dumka, Kiev (1983).
[3] S. Lepri, R. Livi, and A. Politi, Phys. Rep., 377, 1–80 (2003); arXiv:cond-mat/0112193v2 (2001). · Zbl 01876230
[4] D. Marx and H. Wiechert, Surface Properties (Adv. Chem. Phys., Vol. 95), Wiley, New York (2007).
[5] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford (1954).
[6] A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Wiley-VCH, Berlin (1999).
[7] M. Toda, Theory of Nonlinear Lattices (Springer Ser. Solid-State Sci., Vol. 20), Springer, Berlin (1981). · Zbl 0465.70014
[8] V. A. Lykah and E. S. Syrkin, Phys. Status Solidi (c), 1, 3052–3056 (2004).
[9] V. A. Lykah and E. S. Syrkin, Physics of Low-Dimensional Structures, 7/8, 103–116 (2004).
[10] V. A. Lykah and E. S. Syrkin, Central Eur. J. Phys., 3, 61–68 (2005).
[11] V. A. Lykah and E. S. Syrkin, J. Phys.: Condens. Matter, 20, 224022 (2008).
[12] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Springer, Berlin (1998).
[13] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, NonlinearWaves of Magnetization: Dynamical and Topological Solitons [in Russian], Naukova Dumka, Kiev (1983).
[14] É. Kamke, Handbook on Ordinary Differential Equations [in Russian], Nauka, Moscow (1976).
[15] R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam (1982).
[16] A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984). · Zbl 0532.60028
[17] O. M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Texts Monographs Phys., Vol. 18), Springer, Berlin (2004). · Zbl 1140.82001
[18] A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov, Course in Higher Mathematics and Mathematical Physics [in Russian], Nauka, Moscow (1985).
[19] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York (1965).
[20] Yu. A. Kosevich, E. S. Syrkin, and A. M. Kosevich, Progr. Surface Science, 55, 59–111 (1997).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.