×

Identifiability in generalized linear models with random effects. (Persian. English summary) Zbl 1413.62116

Summary: Identifiablity is a necessary property for the adequacy of a statistical model. When a model is not identifiable, not amount of data cannot determine true parameter. In this article, well-known concept of identifiablity and its properties is reviewed. Moreover, since non-identifiablity problem in linear mixed effects models and generalized linear models with random effects is very common, our main focus is on these models. On the other hand, statistical software, after fitting non-identifiable models, don’t usually indicate the problem and show invalid outputs. Consequently, it is useful to have a way to check model identifiability before fitting. In this regard, some new theorems to check identifiability in generalized linear models with random effects are presented. data from non-identifiable models are simulated and problems with model non-identifiablity are listed for showing advantages of the mentioned theorems.

MSC:

62J12 Generalized linear models (logistic models)
62J05 Linear regression; mixed models

Software:

S-PLUS; MEMSS; WWGbook
PDF BibTeX XML Cite
Full Text: Link

References:

[1] Shao‎, ‎J‎. ‎(2003)‎. Mathematical Statistics (2\^{}{nd }ed.),. Springer‎. ‎ · Zbl 1018.62001
[2] West‎, ‎B.‎, ‎Welch‎, K.B. ‎and ‎Galecki, A. T. (2007)‎. Linear Mixed Models: A Practical Guide Using StatisticalSoftware. NewYork‎: ‎Chapman & Hall‎, ‎CRC‎. ‎
[3] Demidenko‎, ‎E‎. ‎(2004)‎. Mixed Models: Theory and Applications. John Wiley & Sons‎.
[4] Verbeke‎, ‎G‎. ‎and Molenberghs, G. (2009)‎. Linear Mixed Model for Longitudinal Data. Springer‎. · Zbl 1162.62070
[5] Littell‎, ‎R. C.‎, ‎Henry‎, P. R. ‎and ‎Ammerman, C. B. (1998)‎. Statistical analysis of repeated measures data using sas procedures. Journal of Animal Science, 76, 1216-1231. ‎
[6] Pinheiro‎, ‎J‎. ‎and Bates, D. (2009)‎. Mixed-Effects Models in S and S-PLUS. Springer‎. ‎
[7] Wolfinger‎, ‎R‎. ‎(1993)‎. Covariance structure selection in general mixed models‎. Communications in Statistics: Simulation andComputation, 22(4)‎, ‎1079-1106‎. ‎ · Zbl 0800.62419
[8] Wang‎, ‎W‎. ‎(2013)‎. Identifiability of linear mixed effects models. Electronic Journal of Statistics, 7, 244–263‎. ‎
[9] San Martin‎, ‎E‎. ‎and Quintana, E. (2002)‎. Consistency and identifiability revisited‎. Brazilian Journal of Probability and Statistics, 16, ‎99–106‎.
[10] ‎Christensen‎, ‎R‎. ‎(2011).1‎ Plane Answers to Complex Questions‎: ‎The Theory of LinearModels (Fourth ed.)‎. Springer‎. ‎
[11] Agresti‎, ‎A‎. ‎(2002)‎. Categorical Data Analysis‎, ‎p‎. ‎133‎. John Wiley & Sons‎.
[12] طهماسبی‌نژاد، ژاله (1390). ‌بررسی مدل‌های همبسته آمیخته با پاسخ‌های پیوسته و گسسته دودویی. پایان‌نامه کارشناسی ارشد, دانشگاه علم و صنعت ایران، تهران.
[13] قهرودی, زهرا رضایی (1387). کاربردهای مدل‌های انتقالی برای تحلیل داده‌های طولی با پاسخ رسته‌ای با و بدون مقادیر گم‌شده، پایان‌نامه دکترا، دانشگاه شهید بهشتی، تهران.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.