×

On volumes along subvarieties of line bundles with nonnegative Kodaira-Iitaka dimension. (English) Zbl 1233.14014

Let \(X\) be a smooth projective variety and \(L\) a line bundle on \(X\) with nonnegative Kodaira-Iitaka dimension \(\kappa(L)\geq 0\). Let \(V\subset X\) be a subvariety of dimension \(d>0\) such that \(V\) is not contained in \(SBs(L)\), where \(SBs(L)= \bigcap_{m>0}Bs|mL|\) is the stable base locus. Let \[ H^0(X|V, mL)={\text{Image}}[H^0(X, mL)\rightarrow H^0(V, mL)] \] be the image of restriction maps. The restricted volume of \(L\) along \(V\) is defined to be \[ {\text{vol}}_{X|V}(L)=\limsup_{m\rightarrow \infty} \frac{h^0(X|V, mL)}{m^d/d!}. \] The reduced volume of \(L\) along \(V\) is \[ \mu(V, L)=\limsup_{m\rightarrow \infty} \frac{h^0(V, {\mathcal{O}}_V( mL)\otimes {\mathcal{I}}(\|mL\| )|_V)} {m^d/d!}, \] where \({\mathcal{I}}(\|mL\|)={\mathcal{I}}(X, \|mL\|)\) is the asymptotic multiplier ideal sheaf of \(mL\) for every positive integer \(m\).
In this paper, the authors prove that both \[ \limsup_{m\rightarrow \infty} \frac{h^0(X|V, mL)}{m^q} \] and \[ \limsup_{m\rightarrow \infty} \frac{h^0(V, {\mathcal{O}}_V( mL)\otimes {\mathcal{I}}(\|mL\| )|_V)} {m^q} \] are finite positive numbers if \(V\) contains a general point of \(X\) and \(\dim f(V)=q\geq 0\), where \(f:X\rightarrow Y\) is the Iitaka fibration associated to \(L\). They also prove that for a very general point \(x\in X\), if \(\mu(C, L)= {\text{vol}}_{X|C}(L)\) for any curve \(C\) passing through \(x\), then either \(\kappa (L)=0\) or \(\kappa (L)=\)dim\(X\). Their proofs rely on techniques of multiplier ideal sheaves and dimension counting arguments.

MSC:

14F18 Multiplier ideals
14C20 Divisors, linear systems, invertible sheaves
14J10 Families, moduli, classification: algebraic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), 1043-1063. · Zbl 1101.14008 · doi:10.1142/S0129167X02001575
[2] J.-P. Demailly, L. Ein, and R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137-156. · Zbl 1077.14516 · doi:10.1307/mmj/1030132712
[3] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Asymptotic invariants of line bundles, Pure Appl. Math. Q. 1 (2005), 379-403. · Zbl 1139.14008 · doi:10.4310/PAMQ.2005.v1.n2.a8
[4] —, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734. · Zbl 1127.14010
[5] —, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607-651. · Zbl 1179.14006 · doi:10.1353/ajm.0.0054
[6] T. Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1-3. · Zbl 0814.14006 · doi:10.2996/kmj/1138039894
[7] C. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), 1-25. · Zbl 1121.14011 · doi:10.1007/s00222-006-0504-1
[8] S. Iitaka, On \(D\) -dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373. · Zbl 0212.53802 · doi:10.2969/jmsj/02320356
[9] Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567-588. · Zbl 0593.14010 · doi:10.1007/BF01388524
[10] R. Lazarsfeld, Positivity in algebraic geometry I, II, Ergeb. Math. Grenzgeb. (3), 48 and 49, Springer-Verlag, Berlin, 2004. · Zbl 1066.14021
[11] Ch. Mourougane and R. Russo, Some remarks on nef and good divisors on an algebraic variety, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 499-504. · Zbl 0907.14001 · doi:10.1016/S0764-4442(97)88896-9
[12] N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, 14, Math. Soc. Japan, Tokyo, 2004. · Zbl 1061.14018
[13] G. Pacienza, On the uniformity of the Iitaka fibration, Math. Res. Lett. 16 (2009), 663-681. · Zbl 1184.14022 · doi:10.4310/MRL.2009.v16.n4.a9
[14] S. Takayama, Iitaka’s fibrations via multiplier ideals, Trans. Amer. Math. Soc. 335 (2003), 37-47. JSTOR: · Zbl 1055.14011 · doi:10.1090/S0002-9947-02-03068-4
[15] —, Seshadri constants and a criterion for bigness of pseudo-effective line bundles, Math. Z. 243 (2003), 179-199. · Zbl 1081.14012 · doi:10.1007/s00209-002-0481-z
[16] —, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), 551-587. · Zbl 1108.14031 · doi:10.1007/s00222-006-0503-2
[17] G. Todorov, Effective log-Iitaka fibrations for surfaces and threefolds, Manuscripta Math. 133 (2010), 183-195. · Zbl 1200.14032 · doi:10.1007/s00229-010-0370-4
[18] H. Tsuji, Numerically trivial fibrations, math.AG/0001023.
[19] —, Pluricanonical systems of projective varieties of general type II, Osaka J. Math. 44 (2007), 723-764. · Zbl 1186.14043
[20] E. Viehweg and D.-Q. Zhang, Effective Iitaka fibrations, J. Algebraic Geom. 18 (2009), 711-730. · Zbl 1177.14039 · doi:10.1090/S1056-3911-09-00515-3
[21] P. M. H. Wilson, On the canonical ring of algebraic varieties, Compositio Math. 43 (1981), 365-385. · Zbl 0459.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.