×

Transient couette flow in a rotating non-darcian porous medium parallel plate configuration: Network simulation method solutions. (English) Zbl 1155.76415

Summary: The transient, viscous, incompressible, hydrodynamic Couette flow in a rotating porous medium channel is studied in this paper. The channel comprises a pair of infinitely long parallel plates which rotate with uniform angular velocity about an axis normal to the plates. The porous medium is simulated using a Darcy-Forchheimer drag force model which includes both bulk matrix porous drag (dominant at low Reynolds numbers) and second order inertial impedance (dominant at higher Reynolds numbers). The two-dimensional Navier-Stokes equations are reduced to a (\(z^*, t^*\)) coordinate system incorporating Coriolis terms, and appropriate initial and boundary conditions are prescribed. Separate porous drag body force terms are incorporated in both the primary and secondary flow momentum equations. Using a set of transformations, the model is rendered dimensionless and shown to be dictated by the Ekman number, Forchheimer number, Darcy number and Reynolds number in a \((z, t)\) coordinate system. Numerical solutions are obtained for the transformed model using the Network Simulation Method. The influence of the hydrodynamic parameters are computed graphically and also the interaction of parameters on the velocity fields is discussed at length. Excellent agreement is found with earlier non-porous flow studies. The analysis has important applications in geophysics and also chemical engineering systems.

MSC:

76U05 General theory of rotating fluids
76S05 Flows in porous media; filtration; seepage
76M20 Finite difference methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Vidyanidhi V., Nigam S.D.: J. Math. Phys. Sci. 1, 85 (1967)
[2] Verma P.D.S., Sehgal M.M.: Couette flow of micropolar fluids. Int. J. Eng. Sci. 42, 65–78 (2004) · Zbl 1211.76144 · doi:10.1016/S0020-7225(03)00277-5
[3] Liu D.C.S., Chen C.F.: Numerical experiments on time-dependent rotational Couette flow. J. Fluid Mech. 59, 77–95 (1973) · Zbl 0259.76024 · doi:10.1017/S0022112073001436
[4] Jana R.N., Datta N.: Couette flow and heat transfer in a rotating system. Acta Mech. 26, 301–306 (1977) · doi:10.1007/BF01177152
[5] Seth G.S., Jana R.N., Maiti M.K.: Unsteady hydromagnetic Couette flow in a rotating system. Int. J. Eng. Sci. 20, 989–999 (1982) · Zbl 0599.76135 · doi:10.1016/0020-7225(82)90034-9
[6] Mandal G., Mandal K.K.: Effect of Hall current on MHD Couette flow between thick arbitrarily conducting plates in a rotating system. J. Physical Soc. Japan 52, 470–477 (1983) · doi:10.1143/JPSJ.52.470
[7] Kythe, P.K., Puri, P.: Exact solution of unsteady Couette flow of a dusty gas. In: Proceedings of PACAM, Rio de Janeiro, Brazil, pp. 348–351 (1989)
[8] Singh A.K., Sacheti N.C., Chandran P.: Transient effects in magneto-hydrodynamic Couette flow with rotation: accelerated motion. Int. J. Eng. Sci. 32, 133–139 (1994) · Zbl 0794.76097 · doi:10.1016/0020-7225(94)90155-4
[9] Kearsley A.J.: A steady state model of Couette flow with viscous heating. Int. J. Eng. Sci. 32, 179–186 (1994) · Zbl 0795.76033 · doi:10.1016/0020-7225(94)90159-7
[10] Nagata M.: Tertiary solutions and their stability in rotating plane Couette flow. J. Fluid Mech. 358, 357–378 (1998) · Zbl 0906.76028 · doi:10.1017/S0022112097008422
[11] Ghosh S.K.: Effect of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field. Czech J. Phys. 52, 51–63 (2002) · doi:10.1023/A:1013913730086
[12] Hayat T., Nadeem S., Asghar S.: Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system. Int. J. Eng. Sci. 42, 65–78 (2004) · Zbl 1211.76144 · doi:10.1016/S0020-7225(03)00277-5
[13] Choi C.K., Chung T.J., Kim M.C.: Buoyancy effects in plane Couette flow heated uniformly from below with constant heat flux. Int. J. Heat Mass Transf. 47, 2629–2636 (2004) · Zbl 1079.76534 · doi:10.1016/j.ijheatmasstransfer.2003.12.010
[14] Guria M., Jana R.N., Ghosh S.K.: Unsteady Couette flow in a rotating system. Int. J. Non-Linear Mech. 41, 838–843 (2006) · doi:10.1016/j.ijnonlinmec.2006.04.010
[15] Singh T.P., Agrawal A.K., Agrawal H.L., Raptis A.: Unsteady free convective flow and mass transfer in a rotating porous medium with Hall current. Astrophys. Space Sci. 181, 171–181 (1981) · Zbl 0729.76096 · doi:10.1007/BF00639086
[16] Rao, G.A., Murthy, A.S.S., Rao, V.V.R.: Hydrodynamic flow and heat transfer in a saturated porous medium between two parallel porous walls in a rotating system. In: Proceedings of 8th National Heat Mass Transfer Conference, AU College of Engineering, Vizag, p 311 (1985)
[17] Rao, V.V.R., Sobha, V.V.: Heat transfer in saturated porous flow in a rotating straight pipe. In: Proceedings of 10th National Heat Mass Transfer Conference, Madurai Kamaraj University, Madurai, p 13 (1987) · Zbl 0636.76109
[18] Vadasz P.: Fluid flow through heterogenous porous media in a rotating square channel. Transp. Porous Media 12, 43–54 (1993) · doi:10.1007/BF00616361
[19] Havstad M.A.: Numerical solution of the three-dimensional fluid flow in a rotating heterogenous porous channel. Int. J. Numer. Meth. Fluids 31, 2 (1999) · Zbl 0952.76056 · doi:10.1002/(SICI)1097-0363(19990930)31:2<411::AID-FLD880>3.0.CO;2-6
[20] Auriault J.L.: Acoustics of rotating deformable saturated porous media. Transp. Porous Media 61, 2 (2005) · doi:10.1007/s11242-004-8214-x
[21] Sawicki, E., Geindreau, C., Auriault, J.-L.: Numerical investigations of the flow through rotating porous media at the microscopic and macroscopic scale. In: 3rd Biot Conference on Poromechanics, University of Oklahoma, Norman, Oklahoma, USA, May 24–27 (2006)
[22] Papathanasiou T.D., Markicevic B., Dendy E.: A computational evaluation of the Ergun and Forchheimer equations for fibrous media. Phys. Fluids J. 13, 2795–2804 (2001) · Zbl 1184.76415 · doi:10.1063/1.1401811
[23] Takhar H.S., Bég O.A., Chamkha A.J., Filip D., Pop I.: Mixed radiation–convection boundary layer flow of an optically dense fluid along a vertical flat plate in a non-Darcy porous medium. Int. J. Appl. Mech. Eng. 8, 483–496 (2003) · Zbl 1160.76411
[24] Bég O.A., Takhar H.S., Bég T.A., Chamkha A.J., Nath G., Majeed R.: Modelling convection heat transfer in a rotating fluid in a thermally-stratified high-porosity medium: numerical finite difference solutions. Int. J. Fluid Mech. Res. 32, 383–401 (2005) · doi:10.1615/InterJFluidMechRes.v32.i4.10
[25] Salem A.M.: Coupled heat and mass transfer in Darcy–Forchheimer mixed convection from a vertical flat plate embedded in a fluid saturated porous medium under the effects of radiation and viscous dissipation. J. Korean Phys. Soc. 48, 409–413 (2006)
[26] Hsu C.T., Cheng P.: A singular perturbation solution for Couette flow over a semi-infinite porous bed. ASME J. Fluids Eng. 113, 137–142 (1991) · doi:10.1115/1.2926486
[27] Nakayama A.: Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid. ASME J. Fluids Eng. 114, 642–647 (1992) · doi:10.1115/1.2910080
[28] Kuznetsov A.V.: Analytical investigation of heat transfer in Couette flow through a porous medium using the Brinkman–Forchheimer-extended Darcy model. Acta Mech. 129, 13–24 (1998) · Zbl 0914.76084 · doi:10.1007/BF01379647
[29] Kuznetsov, A.V.: A boundary layer solution for Couette flow in a porous fluid interface region, ASME–JSME Fluids Engineering Division Summer Meeting, San Francisco, CA, July 18–23 (1999)
[30] Chaudhry R.S., Sharma P.K.: Three-dimensional Couette flow and heat transfer through a porous medium with variable permeability. J. Zheijang Univ. Sci. 4, 181–185 (2003) · doi:10.1631/jzus.2003.0181
[31] Shams M., Currie I.G., James D.F.: The flow field near the edge of a model porous medium. Exp. Fluids 35, 193–198 (2004) · doi:10.1007/s00348-003-0657-2
[32] Eldabe N.T.M., Sallam S.N.: Non-Darcy Couette flow through a porous medium of magneto-hydrodynamic viscoelastic fluid with heat and mass transfer. Can. J. Phys. 83, 1243–1265 (2005) · doi:10.1139/p05-056
[33] Hayat T., Khan M., Ayub M., Siddiqui A.M.: The unsteady Couette flow of a second grade fluid in a layer of porous médium. Arch. Mech. 57, 4 (2005) · Zbl 1098.76007
[34] Gebhart B. et al.: Buoyancy-induced Flows and Transport. Hemisphere, New York (1988) · Zbl 0699.76001
[35] Bég O.A., Takhar H.S., Nath G., Chamkha A.J.: Mathematical modeling of hydromagnetic convection from a rotating sphere with impulsive motion and buoyancy effects. Non-linear Anal. Model. Control J. 11, 227–245 (2006) · Zbl 1210.76208
[36] Bég O.A., Takhar H.S., Singh A.K.: Multi-parameter perturbation analysis of unsteady oscillatory magneto-convection in porous media with heat source effects. Int. J. Fluid Mech. Res. 32(6), 635–661 (2005) · doi:10.1615/InterJFluidMechRes.v32.i6.10
[37] Bhargava R., Rawat S., Takhar H.S., Bég O.A.: Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous medium channel. Meccanica 42(3), 247–262 (2007) · Zbl 1162.76410 · doi:10.1007/s11012-007-9052-z
[38] Bég, O.A., Bég, T.A., Takhar, H.S., Warke, A.S., Das, S.K.: Numerical modeling of subsurface contaminant transport with simultaneous first order chemical reaction and second order decay using the ADI scheme, 5th HEFAT Conference, Cairo, Egypt, September (2005)
[39] Fryer, M., Bég, O.A.: Simulating the transient development of wall fire boundary layers in shopping atria using the finite volume method. Technical Report FIREDYN-07-III, Leeds College of Building/Leeds Metropolitan University, Fire Engineering Sciences Program, January (2007)
[40] Bég, O.A., Sajid, A.: Simulating smoke plumes using micropolar theory and cubic spline difference solvers. Technical Report SMOKE-IV, Universidyne Research, Bradford University Science Park, England, UK, November (2002)
[41] Zueco J.: Numerical study of an unsteady free convective magnetohydrodynamic flow of a dissipative fluid along a vertical plate subject to constant heat flux. Int. J. Eng. Sci. 44, 1380–1393 (2006) · Zbl 1213.76139 · doi:10.1016/j.ijengsci.2006.08.006
[42] Horno, J.: (ed) Network Simulation Method, Research Signpost. Trivandrum, Kerala (India) (2002)
[43] Zueco J., Alhama F.: Simultaneous inverse determination of the temperature-dependent thermophysical properties of fluids using the network simulation method. Int. J. Heat Mass Trans. 50, 3234–3243 (2007) · Zbl 1119.80377 · doi:10.1016/j.ijheatmasstransfer.2007.01.004
[44] Pspice 6.0. Irvine, California 92718. Microsim Corporation, 20 Fairbanks (1994)
[45] Zueco J.: Network method to study the transient heat transfer problem in a vertical channel with viscous dissipation. Int. Comm. Heat Mass Transf. 33, 1079–1087 (2006) · doi:10.1016/j.icheatmasstransfer.2005.08.013
[46] Bear J.: Dynamics of Fluids in Porous Media. Dover, New York (1988) · Zbl 1191.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.