Yazlik, Y.; Elsayed, E. M.; Taskara, N. On the behaviour of the solutions of difference equation systems. (English) Zbl 1293.39008 J. Comput. Anal. Appl. 16, No. 5, 932-941 (2014). The authors consider the systems \[ \displaystyle{x_{n+1} = {{y_{n-5}}\over{\pm 1+y_{n-1}x_{n-3}y_{n-5}}}\;;\;y_{n+1} = {{x_{n-5}}\over{\pm 1+x_{n-1}y_{n-3}x_{n-5}}}} \] and \[ \displaystyle{x_{n+1} = {{y_{n-5}}\over{\pm 1+y_{n-1}x_{n-3}y_{n-5}}}\;;\;y_{n+1} = {{x_{n-5}}\over{\mp 1+x_{n-1}y_{n-3}x_{n-5}}}} \] under all possible sign combinations for each of them. The following problems are tackled: explicit form of the solutions, equilibria and their attractiveness, periodic solutions. Numerical examples are provided. Reviewer: Vladimir Răsvan (Craiova) Cited in 7 Documents MSC: 39A20 Multiplicative and other generalized difference equations, e.g., of Lyness type 39A23 Periodic solutions of difference equations 39A30 Stability theory for difference equations Keywords:system of rational difference equations; explicit solutions; periodicity; stability PDF BibTeX XML Cite \textit{Y. Yazlik} et al., J. Comput. Anal. Appl. 16, No. 5, 932--941 (2014; Zbl 1293.39008)