# zbMATH — the first resource for mathematics

A solvable system of difference equations. (English) Zbl 07272993
Summary: In this paper, we show that the system of difference equations $x_n={\frac{ay^p_{n-1}+b(x_{n-2}y_{n-1})^{p-1}}{cy_{n-1}+dx^{p-1}_{n-2}}},\ y_n={\frac{{\alpha}x^p_{n-1}+{\beta}(y_{n-2}x_{n-1})^{p-1}}{{\gamma}x_{n-1}+{\delta}y^{p-1}_{n-2}}},$ $$n\in \mathbb{N}_0$$ where the parameters $$a, b, c, d, \alpha, \beta, \gamma, \delta, p$$ and the initial values $$x_{-2}, x_{-1}, y_{-2}, y_{-1}$$ are real numbers, can be solved. Also, by using obtained formulas, we study the asymptotic behaviour of well-defined solutions of aforementioned system and describe the forbidden set of the initial values. Our obtained results significantly extend and develop some recent results in the literature.
##### MSC:
 39A20 Multiplicative and other generalized difference equations, e.g., of Lyness type 39A10 Additive difference equations 39A22 Growth, boundedness, comparison of solutions to difference equations
Full Text:
##### References:
  L. Brand, Classroom notes: a sequence defined by a difference equation, Amer. Math. Monthly 62 (1955), no. 7, 489-492. https://doi.org/10.2307/2307362  M. Dehghan, R. Mazrooei-Sebdani, and H. Sedaghat, Global behaviour of the Riccati difference equation of order two, J. Difference Equ. Appl. 17 (2011), no. 4, 467-477. https://doi.org/10.1080/10236190903049017 · Zbl 1215.39012  I. Dekkar, N. Touafek, and Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111 (2017), no. 2, 325-347. https://doi.org/10.1007/s13398-016-0297-z · Zbl 1370.39007  S. N. Elaydi, An Introduction to Difference Equations, second edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4757-3110-1 · Zbl 0930.39001  M. M. El-Dessoky and E. M. Elsayed, On the solutions and periodic nature of some systems of rational difference equations, J. Comput. Anal. Appl. 18 (2015), no. 2, 206-218. http://doi.org/10.1166/jctn.2015.4263 · Zbl 1328.39012  E. M. Elsayed, On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath. 7 (2014), no. 6, 1450067, 26 pp. https://doi.org/10.1142/S1793524514500673 · Zbl 1308.39012  N. Haddad, N. Touafek, and J. F. T. Rabago, Solution form of a higher-order system of difference equations and dynamical behavior of its special case, Math. Methods Appl. Sci. 40 (2017), no. 10, 3599-3607. https://doi.org/10.1002/mma.4248 · Zbl 1368.39003  N. Haddad, N. Touafek, and J. F. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Com-put. 56 (2018), no. 1-2, 439-458. https://doi.org/10.1007/s12190-017-1081-8 · Zbl 1390.39011  Y. Halim and M. Bayram, On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences, Math. Methods Appl. Sci. 39 (2016), no. 11, 2974-2982. https://doi.org/10.1002/mma.3745 · Zbl 1342.39003  Y. Halim, N. Touafek, and Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math. 39 (2015), no. 6, 1004-1018. https://doi.org/10.3906/mat-1503-80 · Zbl 1339.39001  T. F. Ibrahim and N. Touafek, On a third order rational difference equation with variable coefficients, DCDIS Series B: Applications & Algorithms 20, (2013), no. 2, 251-264. · Zbl 1263.39004  E. A. Grove, Y. Kostrov, G. Ladas, and S. W. Schultz, Riccati difference equations with real period-2 coefficients, Comm. Appl. Nonlinear Anal. 14 (2007), no. 2, 33-56. · Zbl 1126.39001  M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall/CRC, Boca Raton, FL, 2002. · Zbl 0981.39011  H. Matsunaga and R. Suzuki, Classification of global behavior of a system of rational difference equations, Appl. Math. Lett. 85 (2018), 57-63. https://doi.org/10.1016/j.aml.2018.05.020 · Zbl 1401.39003  L. C. McGrath and C. Teixeira, Existence and behavior of solutions of the rational equation $$x_n+1=(ax_{n-1}+bx_n)/(cx_{n-1}+dx_n)x_n,\;n = 0, 1, 2$$, ..., Rocky Mountain J. Math. 36 (2006), no. 2, 649-674. https://doi.org/10.1216/rmjm/1181069472 · Zbl 1134.39005  S. Reich and A. J. Zaslavski, Asymptotic behavior of a dynamical system on a metric space, J. Nonlinear Variational Anal. 3 (2019), 79-85. · Zbl 1435.37028  H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Difference Equ. Appl. 15 (2009), no. 3, 215-224. https://doi.org/10.1080/10236190802054126 · Zbl 1169.39006  S. Selvarangam, S. Geetha, and E. Thandapani, Existence of nonoscillatory solutions to second order neutral type difference equations with mixed arguments, Int. J. Difference Equ. 13 (2018), no. 1, 55-69.  S. Stevic, On a system of difference equations with period two coefficients, Applied Mathematics and Computation 218 (2011), no. 8, 4317-4324. https://doi.org/10.1016/j.amc.2011.10.005 · Zbl 1256.39008  S. Stevic, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), no. 9, 5010-5018. https://doi.org/10.1016/j.amc.2011.10.068 · Zbl 1253.39011  S. Stevic, Representation of solutions of bilinear difference equations in terms of gen-eralized Fibonacci sequences, Electronic Journal of Qualitative Theory of Differential Equations 2014 (2014), no. 67, 1-15.  S. Stevic, M. A. Alghamdi, N. Shahzad, and D. A. Maturi, On a class of solvable difference equations, Abstr. Appl. Anal. 2013 (2013), Art. ID 157943, 7 pp. https://doi.org/10.1155/2013/157943 · Zbl 1297.39005  D. T. Tollu, Y. Yazlik, and N. Taskara, On the solutions of two special types of Riccati difference equation via Fibonacci numbers, Adv. Difference Equ. 2013 (2013), 174, 7 pp. https://doi.org/10.1186/1687-1847-2013-174 · Zbl 1390.39020  D. T. Tollu, Y. Yazlik, and N. Taskara, On fourteen solvable systems of difference equations, Appl. Math. Comput. 233 (2014), 310-319. https://doi.org/10.1016/j.amc.2014.02.001 · Zbl 1334.39002  D. T. Tollu, Y. Yazlik, and N. Taskara, On a solvable nonlinear difference equation of higher order, Turkish J. Math. 42 (2018), no. 4, 1765-1778. https://doi.org/10.3906/mat-1705-33 · Zbl 1424.39023  Q. Wang and Q. Zhang, Dynamics of a higher-order rational difference equation, J. Appl. Anal. Comput. 7 (2017), no. 2, 770-787. http://doi.org/10.11948/2017048  Y. Yazlik, On the solutions and behavior of rational difference equations, J. Comput. Anal. Appl. 17 (2014), no. 3, 584-594. · Zbl 1294.39005  Y.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.