Yalçiner, Aynur; Taşkara, Necati A note for bound of Euclidean norm of group inverse. (English) Zbl 1181.15028 Int. J. Contemp. Math. Sci. 4, No. 9-12, 519-524 (2009). For a finite square complex matrix \(A= [a_{ij}]^n_{i,j=1}\), its Euclidean norm is \[ \| A\|_2= \Biggl(\sum^n_{i,j= 1}|a_{ij}|^2\Biggr)^{1/2} \] and its group inverse is the unique matrix \(A^\#\) satisfying \(AA^\# A= A\), \(A^\# AA^\#= A^\#\) and \(AA^\#= A^\# A\). In this note, the authors obtain, for the circulant matrix \(A= \left[{n\choose\text{mod}(j-i,n)}\right]^n_{i,j=1}\), a lower bound for the Euclidean norm of its group inverse \(A^\#\):\[ \| A^\#\|_2\geq \sqrt{{n\over {2n\choose n}- 1}}. \] Reviewer: Pei Yuan Wu (Hsinchu) MSC: 15A45 Miscellaneous inequalities involving matrices 15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory 15A09 Theory of matrix inversion and generalized inverses Keywords:circulant matrix; Euclidean norm; lower bound; group inverse PDF BibTeX XML Cite \textit{A. Yalçiner} and \textit{N. Taşkara}, Int. J. Contemp. Math. Sci. 4, No. 9--12, 519--524 (2009; Zbl 1181.15028) Full Text: Link