zbMATH — the first resource for mathematics

Stochastic approach to the solution of Boussinesq-like problems in discrete media. (English) Zbl 1447.74004
Summary: A vertical surface load acting on a half-space made of discrete and elastic particles is supported by a network of force chains that changes with the specific realization of the packing. These force chains can be transformed into equivalent stress fields, but the obtained values are usually different from those predicted by the unique solution of the corresponding boundary value problem. In this research the relationship between discrete and continuum approaches to Boussinesq-like problems is explored in the light of classical statistical mechanics. In the principal directions of the stress established by the continuum-based approach, the probability distribution functions of the extensive normal and shear stresses of particles are anticipated to be exponential and Laplace distributions, respectively. The extensive stress is the product of the volumetric average of the stress field within a region by the volume of that region. The parameters locating and scaling these probability distribution functions (PDFs) are such that the expected values of the extensive stresses match the solution to the corresponding boundary value problem: zero extensive shear stress and extensive normal stresses equal to the principal ones. The continuum-based approach is still needed to know the expected values, but this research article presents a powerful method for quantifying their expected variability. The theory has been validated through massive numerical simulation with the discrete element method. These results could be of interest for highly fragmented, faulted or heterogeneous media or on small length scales (with particular applications for laboratory testing).
74A25 Molecular, statistical, and kinetic theories in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
74S99 Numerical and other methods in solid mechanics
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
Full Text: DOI
[1] Bagi, K., Stress and strain in granular assemblies, Mech. Mater., 22, 3, 165-177 (1996)
[2] Balescu, R., Equilibrium and Nonequilibrium Statistical Mechanics (1975) · Zbl 0984.82500
[3] Boussinesq, J.: Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse, vol. 4. Gauthier-Villars, Paris (1885) · Zbl 0213.26402
[4] Coppersmith, S. N.; Liu, C.-h.; Majumdar, S.; Narayan, O.; Witten, T. A., Model for force fluctuations in bead packs, Phys. Rev. E, 53, 4673-4685 (1996)
[5] Cundall, P. A.; Strack, O. D.L., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65 (1979)
[6] Drescher, A.; de Josselin de Jong, G., Photoelastic verification of a mechanical model for the flow of a granular material, J. Mech. Phys. Solids, 20, 5, 337-340 (1972)
[7] Edwards, S., The full canonical ensemble of a granular system, Phys. A, Stat. Mech. Appl., 353, 114-118 (2005)
[8] Edwards, S.; Oakeshott, R., Theory of powders, Phys. A, Stat. Mech. Appl., 157, 3, 1080-1090 (1989)
[9] Edwards, S.; Grinev, D.; Brujić, J., Fundamental problems in statistical physics of jammed packings, Phys. A, Stat. Mech. Appl., 330, 1, 61-76 (2003) · Zbl 1037.74012
[10] Flamant, A., Sur la répartition des pressions dans un solide rectangulaire chargé transversalement, C. R. Acad. Sci. Paris, Ser. I, 114, 1465-1468 (1892) · JFM 24.0955.01
[11] Gardiner, B.; Tordesillas, A., Micromechanics of shear bands, Int. J. Solids Struct., 41, 21, 5885-5901 (2004) · Zbl 1112.74361
[12] Henkes, S.; Chakraborty, B., Statistical mechanics framework for static granular matter, Phys. Rev. E, 79 (2009)
[13] Henkes, S.; O’Hern, C. S.; Chakraborty, B., Entropy and temperature of a static granular assembly: an ab initio approach, Phys. Rev. Lett., 99 (2007)
[14] Johnson, K., Contact Mechanics (1992), Cambridge: Cambridge University Press, Cambridge
[15] Lade, P. V., Overview of constitutive models for soils, Soil Constitutive Models: Evaluation, Selection, and Calibration, 1-34 (2005)
[16] Liu, C.-h.; Nagel, S. R.; Schecter, D. A.; Coppersmith, S. N.; Majumdar, S.; Narayan, O.; Witten, T., Force fluctuations in bead packs, Science, 269, 5223, 513-515 (1995)
[17] Majmudar, T. S.; Behringer, R. P., Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 7045, 1079-1082 (2005)
[18] Mueth, D. M.; Jaeger, H. M.; Nagel, S. R., Force distribution in a granular medium, Phys. Rev. E, 57, 3164-3169 (1998)
[19] Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity (2013), Berlin: Springer, Berlin
[20] Nicot, F.; Hadda, N.; Guessasma, M.; Fortin, J.; Millet, O., On the definition of the stress tensor in granular media, Int. J. Solids Struct., 50, 14, 2508-2517 (2013)
[21] Pathria, R.; Beale, P., Statistical Mechanics (1996), Amsterdam: Elsevier, Amsterdam
[22] Peters, J. F.; Muthuswamy, M.; Wibowo, J.; Tordesillas, A., Characterization of force chains in granular material, Phys. Rev. E, 72 (2005)
[23] Podio-Guidugli, P.; Favata, A., Elasticity for Geotechnicians. A Modern Exposition of Kelvin. Boussinesq, Flamant, Cerruti, Melan, and Mindlin Problems (2014) · Zbl 1281.74002
[24] Poulos, H.; Davis, E., Elastic Solutions for Soil and Rock Mechanics (1973), New York: Wiley, New York
[25] Radjai, F., Modeling force transmission in granular materials, C. R. Phys., 16, 1, 3-9 (2015)
[26] Radjai, F.; Jean, M.; Moreau, J. J.; Roux, S., Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett., 77, 274-277 (1996)
[27] Radjai, F.; Roux, S.; Moreau, J. J., Contact forces in a granular packing, Chaos, Interdiscip. J. Nonlinear Sci., 9, 3, 544-550 (1999) · Zbl 1055.74514
[28] Sibille, L.; Froiio, F., A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials, Granul. Matter, 9, 3, 183 (2007)
[29] Šmilauer, V., Reference manual, Yade Documentation (2015)
[30] Sun, Q.; Jin, F.; Wang, G.; Song, S.; Zhang, G., On granular elasticity, Sci. Rep., 5, 9652 (2015)
[31] Tejada, I. G., Ensemble theory for slightly deformable granular matter, Eur. Phys. J. E, 37, 9, 81 (2014)
[32] Tejada, I. G.; Sigursteinsson, H.; Erlingsson, S.; Bessason, B., Stochastic modeling of stress fields in geotechnical problems with discrete media, XVII European Conference on Soil Mechanics and Geotechnical Engineering (2019)
[33] Tejada, I. G.; nate, E. O.; Wriggers, P.; Zohdi, T.; Bischoff, M.; Owen, D., Stochastic solution of geotechnical problems in truly discrete media, VI International Conference on Particle-Based Methods. Fundamentals and Applications PARTICLES 2019, 412-422 (2019)
[34] Timoshenko, S.; Goodier, J., Theory of Elasticity (1969), New York: McGraw-Hill, New York · Zbl 0045.26402
[35] Tordesillas, A.; Walker, D. M.; Andò, E.; Viggiani, G., Revisiting localized deformation in sand with complex systems, Proc. R. Soc. A, Math. Phys. Eng. Sci., 469, 2152 (2013)
[36] Verruijt, A.; Van Baars, S., Soil Mechanics (2007), Delft: VSSD, Delft
[37] Vesic, A.B.: Bearing capacity of deep foundations in sand. Highw. Res. Rec. 1(39) (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.