×

Mathematical model of cardiovascular and metabolic responses to umbilical cord occlusions in fetal sheep. (English) Zbl 1332.92019

Summary: Fetal acidemia during labor is associated with an increased risk of brain injury and lasting neurological deficits. This is in part due to the repetitive occlusions of the umbilical cord (UCO) induced by uterine contractions. Whereas fetal heart rate (FHR) monitoring is widely used clinically, it fails to detect fetal acidemia. Hence, new approaches are needed for early detection of fetal acidemia during labor. We built a mathematical model of the UCO effects on FHR, mean arterial blood pressure (MABP), oxygenation and metabolism. Mimicking fetal experiments, our in silico model reproduces salient features of experimentally observed fetal cardiovascular and metabolic behavior including FHR overshoot, gradual MABP decrease and mixed metabolic and respiratory acidemia during UCO. Combined with statistical analysis, our model provides valuable insight into the labor-like fetal distress and guidance for refining FHR monitoring algorithms to improve detection of fetal acidemia and cardiovascular decompensation.

MSC:

92C40 Biochemistry, molecular biology
92C99 Physiological, cellular and medical topics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Agrawal S, Doucette F, Gratton R, Richardson B, Gagnon R (2003) Intrapartum computerized fetal heart rate parameters and metabolic acidosis at birth. Obstet Gynecol 102:731 · doi:10.1016/S0029-7844(03)00806-8
[2] Bennet L, Westgate J, Liu Y, Wassink G, Gunn A (2005) Fetal acidosis and hypotension during repeated umbilical cord occlusions are associated with enhanced chemoreflex responses in near-term fetal sheep. J Appl Physiol 99:1477 · doi:10.1152/japplphysiol.00431.2005
[3] Bishai J, Blood A, Hunter C, Longo L, Power G (2003) Fetal lamb cerebral blood flow (CBF) and oxygen tensions during hypoxia: a comparison of laser Doppler and microsphere measurements of CBF. J Physiol 456:869 · doi:10.1113/jphysiol.2002.025270
[4] Breit M (2004) Sensitivity analysis of biological pathways, Master’s thesis, University for Health Sciences, Medical Informatics and Technology, Germany
[5] Cabrera M, Saidel G, Kalhan S (1998) Role of \[O_22\] in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Ann Biomed Eng 26:1 · doi:10.1114/1.28
[6] Cloutier M, Bolger F, Lowry J, Wellstead P (2009) An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. J Comput Neurosci 3:391 · doi:10.1007/s10827-009-0152-8
[7] Couto P, Meurs W, Bernardes J, de Sa JM, Goodwin J (2002) Mathematical model for educational simulation of the oxygen delivery to the fetus. Control Eng Pract 10:59 · doi:10.1016/S0967-0661(01)00133-2
[8] D’Angelo C, Papelier Y (2005) Mathematical modeling of the cardiovascular system and skeletal muscle interaction during excecise. ESAIM Proc 14:72 · Zbl 1070.92009
[9] de Haan H, Gunn A, Gluckman P (1997) Fetal heart rate changes do not reflect cardiovascular deterioration during brief repeated umbilical cord occlusions in near-term fetal lambs. Am J Obstet Gynecol 176:8 · doi:10.1016/S0002-9378(97)80004-X
[10] Durosier L, Green G, Batkin I, Seely A, Ross M, Richardson B, Frasch M (2014) Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Front Pediatr 2:PMC4017161 · doi:10.3389/fped.2014.00038
[11] Ellwein L, Tran H, Zapata C, Novak V, Olufsen M (2008) Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. Cardiovasc Eng 8:94 · doi:10.1007/s10558-007-9047-3
[12] Frasch M, Muller T, Hoyer D, Weiss C, Schubert H, Schwab M (2009a) Nonlinear properties of vagal and sympathetic modulations of heart rate variability in ovine fetus near term. Am J Physiol Regul Integr Comp Physiol 296:R702 · doi:10.1152/ajpregu.90474.2008
[13] Frasch M, Mansano R, Gagnon R, Richardson B, Ross M (2009b) Measures of acidosis with repetitive umbilical cord occlusions leading to fetal asphyxia in the near-term ovine fetus. AJOG 200(200):e1
[14] Frasch M, Muller T, Hoyer D, Weiss C, Schubert H, Schwab M (2009c) Heart rate variability analysis allows early asphyxia detection in ovine fetus. Reprod Sci 16:509 · doi:10.1177/1933719108327597
[15] Frasch M, Keen A, Gagnon R, Ross M, Richardson B (2011) Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PLoS One 6:e22100 · doi:10.1371/journal.pone.0022100
[16] Frasch M, Frank B, Last M, Muller T (2012) Time scales of autonomic information flow in near-term fetal sheep. Front Physiol 3:378 · doi:10.3389/fphys.2012.00378
[17] Gold N, Frasch M, Herry C, Richardson B, Seely A, Wang X (2015) Online change-point detection for non stationary biological time series with Gaussian processes. In preparation
[18] Gui R, Schüthe C, Bernhard S (2015) Mathematical modeling and sensitivity analysis of arterial anastomosis in arm arteries. ZIB Report
[19] Hunter C, Blood A, Power G (2003) Cerebral metabolism during cord occlusion and hypoxia in the fetal sheep: a novel method of continuous measurement based on heat production. J Physiol 552:241 · doi:10.1113/jphysiol.2003.048082
[20] Jensen A, Garnier Y, Berger R (1999) Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynecol Reprod Biol 84:155 · doi:10.1016/S0301-2115(98)00325-X
[21] Khoo M, Kronauer R, Strohl K, Slutsky A (1982) Factors inducing periodic breathing in humans: a general model. J Appl Physiol 53:644
[22] Khoo M, Gottschalk A, Pack A (1991) Sleep induced periodic breathing and apnea: a theoretical study. J Appl Physiol 70:2014
[23] Koos B, Chau A, Qgunyemi D (1995) Adenosine mediates metabolic and cardiovascular responses to hypoxia in fetal sheep. J Physiol 488:761 · doi:10.1113/jphysiol.1995.sp021007
[24] Kubota T, Alexander J, Itaya R, Todaka K, Sugimachi M, Sunagawa K, Nose Y (1992a) Dynamic effects of carotid sinus baroreflex on ventriculoarterial coupling studied in anesthetized dogs. Circ Res 70:1044 · doi:10.1161/01.RES.70.5.1044
[25] Kubota T, Chishaki H, Yoshida T, Sunagawa K, Takeshita A, Nose Y (1992b) How to encode arterial pressure into carotid sinus nerve to invoke natural baroreflex. Am J Physiol 263:H307
[26] Levy M, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27:465
[27] Liang F, Liu H (2006) Simulation of hemodynamic responses to the Valsalva Maneuver: an integrative computational model of the cardiovascular system and the autonomic nervious system. J Physiol Sci 56:45 · doi:10.2170/physiolsci.RP001305
[28] Liang F, Takagi S, Himeno R (2009) Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med Biol Eng Comput 47:743 · doi:10.1007/s11517-009-0449-9
[29] Liston R, Sawchuck D, Young D (2007) Fetal health surveillance: antepartum and intrapartum consensus guideline. J Obstet Gynecol Can 29:53
[30] Low J, Panagiotopoulos C, Derrick E (1995) Newborn complications after intrapartum asphyxia with metabolic acidosis in the preterm fetus. Am J Obstet Gynecol 172:805 · doi:10.1016/0002-9378(95)90003-9
[31] Magosso E, Ursino M (2001) A mathematical model of CO \[_22\] effect on cardiovascular regulation. Am J Physiol Heart Circ Physiol 281:H2036
[32] Mallard E, Williams C, Johnston B, Gunning M, Davis S et al (1995) Repeated episodes of umbilical cord occlusion in fetal sheep lead to preferential damage to the striatum and sensitize the heart to further insults. Pediatr Res 37:707 · doi:10.1203/00006450-199506000-00006
[33] Olufsen M, Tran H, Ottesen J (2004) Modeling cerebral blood flow control during posture change from sitting to standing. Cardiovasc Eng Int J 4:47 · doi:10.1023/B:CARE.0000025122.46013.1a
[34] Olufsen M, Ottesen J, Tran H, Ellwein L, Lipsitz L, Novak V (2005) Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 99:1523 · doi:10.1152/japplphysiol.00177.2005
[35] Orlowski P, Chappell M, Park C, Grau V, Payne S (2011) Modeling of pH dynamics in brain cells after stroke. Interface Focus 1:408 · doi:10.1098/rsfs.2010.0025
[36] Quilligan E, Vasicka A, Aznar R, Lipsitz P, Moore T, Bloor BM (1960) Partial pressure of oxygen in the intervillous space and the umbilical vessels. Am J Obstet Gynecol 79:1048
[37] Ramsay J, Hooker G, Campbell D, Cao J (2007) Parameter estimation for differential equations: a generalized smoothing approach. J R Stat Soc B 69:741 · Zbl 07555374 · doi:10.1111/j.1467-9868.2007.00610.x
[38] Ross M, Jessie M, Amaya K, Matushewski B, Durosier L, Martin M, Richardson B (2013) Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus. Am J Obstet Gynecol 208:e1 · doi:10.1016/j.ajog.2012.10.883
[39] Shi Y, Patricia L, Rodney H (2011) Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 10:1 · doi:10.1186/1475-925X-10-33
[40] Thakor A, Giussani D (2008) Effects of acute acidemia on the fetal cardiovascular defense to acute hypoxemia. Am J Physiol Regul Integr Comp Physiol 296:R90 · doi:10.1152/ajpregu.90689.2008
[41] Ursino M (1998) Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol 275:H1733
[42] Ursino M, Magosso E (2000) Acute cardiovascular response to isocapnic hypoxia. I. A mathematical model. Am J Physiol Heart Circ Physiol 279:H149
[43] Ursino M, Magosso E (2003) Role of short-term cardiovascular regulation in heart period variability. a modeling study. Am J Physiol Heart Circ Physiol 284:H1479 · doi:10.1152/ajpheart.00850.2002
[44] van der Hout-van der Jagt M, Oei S, Bovendeerd P (2012) A mathematical model for simulation of early decelerations in cardiotocogram during labor. Med Eng Phys 34:579 · doi:10.1016/j.medengphy.2011.09.004
[45] van der Hout-van der Jagt M, Oei S, Bovendeerd P (2013) Simulation of reflex late decelerations in labor with a mathematical model. Early Hum Dev 89:7 · doi:10.1016/j.earlhumdev.2012.07.006
[46] Wang X, Durosier L, Ross M, Richardson B, Frasch M (2014) Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. PLoS One 9:PMC4182309
[47] Westgate J, Bennet L, Gunn A (1999) Fetal heart rate variability changes during brief repeated umbilical cord occlusion in near term fetal sheep. J Obstet Gynecol 106:664
[48] Westgate J, Bennet L, de Haan H, Gunn A (2001) Fetal heart rate overshoot during repeated umbilical cord occlusion in sheep. Obstet Gynecol 97:454 · doi:10.1016/S0029-7844(00)01123-6
[49] Westgate J, Wibbens B, Bennet L, Wassink G, Parer J, Gunn A (2007) The intrapartum deceleration in center stage: a physiologic approach to the interpretation of fetal heart rate changes in labor. Am J Obstet Gynecol 197(236):e1
[50] Yan E, Baburamant A, Walker A, Walker D (2009) Changes in cerebral blood flow, cerebral metabolites, and breathing movements in the sheep fetus following asphyxia produced by occlusion of the umbilical cord. Am J Physiol Regul Integr Comp Physiol 297:R60 · doi:10.1152/ajpregu.00047.2009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.