×

Impact of compressor failures on gas transmission network capability. (English) Zbl 1480.90085

Summary: National Grid, the gas operator in the United Kingdom, has experienced challenges in evaluating the capability of its gas transmission network to maintain function in the event of risks particularly to withstand the impact of compressor failures. We propose a mathematical programming model to support the operator in dealing with the problem. Several solution techniques are developed to solve the various versions of the problem efficiently. In the case of little data on compressor failure, an uncertainty theory is applied to solve this problem if the compressor failures are independent; while a robust optimisation technique is developed to solve it when they are not. Otherwise, when there are data on compressor failure, Monte Carlo simulation is applied to find the expected capability of the gas transmission network. Computational experiments, carried out on a case study at National Grid, demonstrate the efficiency of the proposed model and solution techniques. A further analysis is performed to determine the impact of compressor failures and suggest efficient maintenance policies for National Grid.

MSC:

90B10 Deterministic network models in operations research
90B90 Case-oriented studies in operations research
90C90 Applications of mathematical programming
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ford, L. R.; Fulkerson, D. R., Flows in Networks (1962), Princeton University Press · Zbl 0106.34802
[2] Schrijver, A., On the history of the transportation and maximum flow problems, Math. Program., 91, 3, 437-445 (2002) · Zbl 1030.90002
[3] Singh, V. K.; Tripathi, I. K.; Nimisha, I. K., Applications of maximal network flow problems in transportation and assignment problems, J. Math. Res., 2, 1, 28-36 (2010) · Zbl 1194.90016
[4] Liu, B., Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty (2010), Springer-Verlag
[5] Han, S.; Peng, Z.; Wang, S., The maximum flow problem of uncertain network, Inf. Sci., 265, 167-175 (2014) · Zbl 1328.90018
[6] Ding, S., The \(α\)-maximum flow model with uncertain capacities, Appl. Math. Model., 39, 7, 2056-2063 (2015) · Zbl 1443.90338
[7] Shi, G.; Sheng, Y.; Ralescu, D. A., The maximum flow problem of uncertain random network, J. Ambient Intell. Humaniz. Comput. (2017)
[8] Alipour, H.; Mirnia, K., Uncertain dynamic network flow problems, J. Uncertain. Anal. Appl., 5, 4, 1-13 (2017)
[9] Bertsimas, D.; Sim, M., Robust discrete optimization and network flows, Math. Program., 98, 1-3, 49-71 (2003) · Zbl 1082.90067
[10] Bertsimas, D.; Nasrabadi, E.; Stiller, S., Robust and adaptive network flows, Oper. Res., 61, 5, 1218-1242 (2013) · Zbl 1291.90046
[11] Zheng, Q. P.; Rebennack, S.; Iliadis, N. A.; Pardalos, P. M., Optimization Models in the Natural Gas Industry (2010), Springer-Verlag · Zbl 1359.90069
[12] Rios-Mercado, R. Z.; Borraz-Sanchez, C., Optimization problems in natural gas transportation systems: a state-of-the-art review, Appl. Energy, 147, 1, 536-555 (2015)
[13] Holland, A., Applications and Innovations in Intelligent Systems XV (2008), Springer
[14] Zwitserloot, R.; Radloff, A., Handbook Utility Management (2009), Springer-Verlag
[15] Neumann, A.; Zachmann, G., The Economics of Natural Gas Storage: A European Perspective (2009), Springer-Verlag
[16] Holland, A., Artificial Intelligence and Cognitive Science (2010), Springer
[17] Foulds, L. R.; Haugland, D.; Jornsten, K., A bilinear approach to the pooling problem, Optimization, 24, 1-2, 165-180 (1992) · Zbl 0817.90073
[18] Adhya, N.; Tawarmalani, M.; Sahinidis, N. V., A lagrangian approach to the pooling problem, Ind. Eng. Chem. Res., 38, 5, 1956-1972 (1999)
[19] Misener, R.; Floudas, C. A., A review of advances for the pooling problem: modeling, global optimization, and computational studies, Appl. Comput. Math., 8, 1, 3-22 (2009) · Zbl 1188.90287
[20] Menon, E. S.; Menon, P. S., Gas Pipeline Hydraulics (2013), Trafford
[21] Wu, S.; Rios-Mercado, R. Z.; Boyd, E. A.; Scott, L. R., Model relaxations for the fuel cost minimization of steady-state gas pipeline networks, Math. Comput. Model., 31, 2-3, 197-220 (2000)
[22] Zhu, G. Y.; Henson, M. A.; Megan, L., Dynamic modelling and linear model predictive control of gas pipeline networks, J. Process Control, 11, 2, 129-148 (2001)
[23] Herran-Gonzalez, A.; De La Cruz, J. M.; De Andres-Toro, B.; Risco-Martin, J. L., Modelling and simulation of a gas distribution pipeline network, Appl. Math. Model., 33, 3, 1584-1600 (2009) · Zbl 1168.90361
[24] Woldeyohannes, A. D.; Majid, M. A.A., Simulation model for natural gas transmission pipeline network system, Simul. Model. Pract. Theory, 19, 1, 196-212 (2011)
[25] Chaczykowski, M., Transient flow in natural gas pipeline - the effect of pipeline thermal model, Appl. Math. Model., 34, 4, 1051-1067 (2010) · Zbl 1185.76853
[26] Lopez-Benito, A.; Elorza Tenreiro, F. J.; Gutierrez-Perez, L. C., Steady-state non-isothermal flow model for natural gas transmission in pipes, Appl. Math. Model., 40, 23, 10020-10037 (2016) · Zbl 1443.76049
[27] Ruan, Y.; Liu, Q.; Zhou, W.; Batty, B.; Gao, W.; Ren, J.; Watanabe, T., A procedure to design the mainline system in natural gas networks, Appl. Math. Model., 33, 7, 3040-3051 (2009)
[28] Ghaithan, A. M.; Attia, A.; Duffuaa, S. O., Multi-objective optimization model for a downstream oil and gas supply chain, Appl. Math. Model. (2017) · Zbl 1480.90044
[29] Koch, T.; Hiller, B.; Pfetsch, M. E.; Schewe, L., Evaluating Gas Network Capacities, MOS-SIAM Series on Optimization (2015), Society for Industrial and Applied Mathematics Philadelphia: Society for Industrial and Applied Mathematics Philadelphia PA, USA · Zbl 1322.90007
[30] P. Praks, V. Kopustinskas, Monte-carlo based reliability modelling of a gas network using graph theory approach, In: Proceedings of the 9th International Conference on Availability, Reliability and Security (2014) 380-386.; P. Praks, V. Kopustinskas, Monte-carlo based reliability modelling of a gas network using graph theory approach, In: Proceedings of the 9th International Conference on Availability, Reliability and Security (2014) 380-386.
[31] Praks, P.; Kopustinskas, V., Probabilistic gas transmission network simulator and application to the EU gas transmission system, J. Polish Saf. Reliab. Assoc., 6, 3, 71-78 (2015)
[32] Praks, P.; Kopustinskas, V.; Masera, M., Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure, Reliab. Eng. Syst. Saf., 144, 254-264 (2015)
[33] Praks, P.; Kopustinskas, V.; Masera, M., Monte-Carlo-based reliability and vulnerability assessment of a natural gas transmission system due to random network component failures, Sustain. Resilient Infrastruct., 2, 3, 97-107 (2017)
[34] Carvalho, R.; Buzna, L.; Bono, F.; Masera, M.; Arrowsmith, D. K.; Helbing, D., Resilience of natural gas networks during conflicts, crises and disruptions, PLoS One, 9, 3, 1-9 (2014)
[35] Olanrewaju, O. T.; Chaudry, M.; Qadrdan, M.; Wu, J.; Jenkins, N., Vulnerability assessment of the European natural gas supply, Proc. Inst. Civil Eng. Energy, 168, 1, 5-15 (2015)
[36] Wollega, E., A Heuristic Simulation and Optimization Algorithm for Large Scale Natural Gas Storage Valuation Under Uncertainty (2015), University of Oklahoma: University of Oklahoma The United States, Ph.D. thesis
[37] Rios-Mercado, R. Z.; Wu, S.; Scott, L. R.; Boyd, E. A., A reduction technique for natural gas transmission network optimization problems, Ann. Oper. Res., 117, 1, 217-234 (2002) · Zbl 1028.90501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.