×

Chaos synchronization in the presence of noise. (English) Zbl 1261.93080

Summary: In this paper, we first develop a systematic procedure of state feedback control, based on a Lur’e-type system, to analyze the synchronization of two chaotic systems in the presence of random white noise. With the aid of the modified independent component analysis (ICA), the real chaotic signal can be extracted from a noisy source where the chaotic signal has been contaminated by random white noise. Hence, a new scheme has been proposed in this paper to combine the modified ICA design and the state feedback control method for achieving chaos synchronization. The synchronization time can be arbitrarily designed to guarantee stability, even if the system’s output is corrupted by measuring noise. A Duffing system example is provided to show the effectiveness of the proposed scheme. The new scheme is first used for control systems with measurement noise which can replace the conventional Kalman filter.

MSC:

93E11 Filtering in stochastic control theory
93B52 Feedback control
37N35 Dynamical systems in control
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1142/S0129183107011157 · Zbl 1200.93084 · doi:10.1142/S0129183107011157
[2] DOI: 10.1142/S0129183108013138 · Zbl 1169.93390 · doi:10.1142/S0129183108013138
[3] DOI: 10.1142/S0129183107011303 · doi:10.1142/S0129183107011303
[4] DOI: 10.1142/S0129183107010565 · Zbl 1152.34040 · doi:10.1142/S0129183107010565
[5] DOI: 10.1142/S0129183107011467 · Zbl 1200.82052 · doi:10.1142/S0129183107011467
[6] DOI: 10.1103/PhysRevA.44.2374 · doi:10.1103/PhysRevA.44.2374
[7] DOI: 10.1142/S0217979207038356 · Zbl 1141.37382 · doi:10.1142/S0217979207038356
[8] DOI: 10.1142/S0217979206033620 · Zbl 1101.37025 · doi:10.1142/S0217979206033620
[9] Lu J., IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 55 pp 1347–
[10] DOI: 10.1142/S0217979204025798 · doi:10.1142/S0217979204025798
[11] DOI: 10.1016/j.physleta.2007.10.012 · Zbl 1217.94094 · doi:10.1016/j.physleta.2007.10.012
[12] DOI: 10.1103/PhysRevE.53.4351 · doi:10.1103/PhysRevE.53.4351
[13] DOI: 10.1088/0031-8949/76/5/005 · Zbl 1125.37311 · doi:10.1088/0031-8949/76/5/005
[14] DOI: 10.1103/PhysRevLett.74.5024 · doi:10.1103/PhysRevLett.74.5024
[15] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[16] DOI: 10.1016/j.chaos.2006.06.014 · Zbl 1152.93483 · doi:10.1016/j.chaos.2006.06.014
[17] DOI: 10.1103/PhysRevE.47.2357 · doi:10.1103/PhysRevE.47.2357
[18] DOI: 10.1103/PhysRevE.50.1642 · doi:10.1103/PhysRevE.50.1642
[19] DOI: 10.1103/PhysRevE.53.2949 · doi:10.1103/PhysRevE.53.2949
[20] DOI: 10.1103/PhysRevE.56.5265 · doi:10.1103/PhysRevE.56.5265
[21] DOI: 10.1103/PhysRevA.46.7387 · doi:10.1103/PhysRevA.46.7387
[22] DOI: 10.1109/31.75404 · doi:10.1109/31.75404
[23] Hérault J., C. R. Acad. Sci. III 299 pp 525–
[24] DOI: 10.1162/neco.1995.7.6.1129 · Zbl 05479838 · doi:10.1162/neco.1995.7.6.1129
[25] DOI: 10.1162/neco.1997.9.7.1483 · doi:10.1162/neco.1997.9.7.1483
[26] Maddox J., Nature 369 pp 517–
[27] DOI: 10.1103/PhysRevE.72.046712 · doi:10.1103/PhysRevE.72.046712
[28] DOI: 10.1007/978-1-4757-2851-4 · doi:10.1007/978-1-4757-2851-4
[29] DOI: 10.1002/0470845899 · doi:10.1002/0470845899
[30] DOI: 10.1103/PhysRevE.50.1642 · doi:10.1103/PhysRevE.50.1642
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.