×

A comparison between the interpolated bounce-back scheme and the immersed boundary method to treat solid boundary conditions for laminar flows in the lattice Boltzmann framework. (English) Zbl 1417.76035

Summary: In this paper, the interpolated bounce-back scheme and the immersed boundary method are compared in order to handle solid boundary conditions in the lattice Boltzmann method. These two approaches are numerically investigated in two test cases: a rigid fixed cylinder invested by an incoming viscous fluid and an oscillating cylinder in a calm viscous fluid. Findings in terms of velocity profiles in several cross sections are shown. Differences and similarities between the two methods are discussed, by emphasizing pros and cons in terms of stability and computational effort of the numerical algorithm.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q20 Boltzmann equations
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon (2001) · Zbl 0990.76001
[2] Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. Lett. 45(8), R5339-R5342 (1992)
[3] Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A., Succi, S.: Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9(2), 269-296 (2011) · Zbl 1364.76174
[4] Zhang, J., Yan, G.: A lattice Boltzmann model for the reaction-diffusion equations with higher-order accuracy. J. Sci. Comput. 52(1), 1-16 (2012) · Zbl 1311.76114 · doi:10.1007/s10915-011-9530-2
[5] Wang, H., Yan, G., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the laplace equation and the poisson equation. J. Sci. Comput. 46(3), 470-484 (2011) · Zbl 1270.76059 · doi:10.1007/s10915-010-9414-x
[6] De Rosis, A.: Analysis of blood flow in deformable vessels via a lattice Boltzmann approach. Int. J. Mod. Phys. C 25(4), 1350107-1350125 (2013)
[7] Falcucci, G., Aureli, M., Ubertini, S., Porfiri, M.: Transverse harmonic oscillations of laminae in viscous fluids: a lattice Boltzmann study. Philos. Trans. R. Soc. Ser. A 369(1945), 2456-2466 (2011) · Zbl 1223.76072 · doi:10.1098/rsta.2011.0062
[8] De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun. Comput. Phys. 13(3), 823-834 (2012) · Zbl 1373.76234
[9] De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: A coupled lattice Boltzmann-finite element approach for two-dimensional fluidstructure interaction. Comput. Fluids 86, 558-568 (2013) · Zbl 1290.76120 · doi:10.1016/j.compfluid.2013.08.004
[10] De Rosis, A.: Fluid-Structure Interaction by a Coupled Lattice Boltzmann-Finite Element Approach. Ph.D. thesis, University of Bologna (2013) · Zbl 1290.76120
[11] De Rosis, A., Ubertini, F., Ubertini, S.: A partitioned approach for two-dimensional fluid-structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary. J. Fluids Struct. (2014). doi:10.1016/j.jfluidstructs.2013.12.009 · Zbl 1417.76035
[12] De Rosis, A.: A lattice Boltzmann-finite element model for two-dimensional fluid-structure interaction problems involving shallow waters. Adv. Water Resour. (2014). doi:10.1016/j.advwatres.2014.01.003
[13] Filippova, O., Hänel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26(7), 697-712 (1997) · Zbl 0902.76077 · doi:10.1016/S0045-7930(97)00009-1
[14] Lallemand, P., Luo, L.-S.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184(2), 406-421 (2003) · Zbl 1062.76555 · doi:10.1016/S0021-9991(02)00022-0
[15] Mei, R., Yu, D., Shyy, W., Luo, L.S.: Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. Lett. E 65(4), 041203 (2002) · doi:10.1103/PhysRevE.65.041203
[16] Peskin, C.S.: The immersed boundary method. Acta Numerica 11(2), 479-517 (2002) · Zbl 1123.74309
[17] Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35-60 (2000) · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[18] Bhatnagar, P., Gross, E., Krook, M.: A model for collisional processes in gases: small amplitude processes in charged and neutral one-component system. Phys. Rev. Lett. 94(3), 515-523 (1954) · Zbl 0055.23609
[19] Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145-197 (1992) · doi:10.1016/0370-1573(92)90090-M
[20] Wu, J., Shu, C.: Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J. Comput. Phys. 228(6), 1963-1979 (2009) · Zbl 1243.76081 · doi:10.1016/j.jcp.2008.11.019
[21] Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn.: An Int. J. 8(1/2/3/4), 3 (2008) · Zbl 1187.76723
[22] Dazhi, Yu., Mei, Renwei, Luo, Li-Shi, Shyy, Wei: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39(5), 329-367 (2003) · doi:10.1016/S0376-0421(03)00003-4
[23] Inamuro, T.: Lattice Boltzmann methods for moving boundary flows. Fluid Dyn. Res. 44(4), 024001 (2012) · Zbl 1319.76039 · doi:10.1088/0169-5983/44/2/024001
[24] Mei, R., Luo, L.S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155(2), 307-330 (1999) · Zbl 0960.82028
[25] Suzuki, K., Inamuro, T.: Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids 49(1), 173-187 (2011) · Zbl 1271.76257 · doi:10.1016/j.compfluid.2011.05.011
[26] Niu, X.D., Shu, C., Chew, Y.T., Peng, Y.: A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys. Lett. A 354(3), 173-182 (2006) · Zbl 1181.76111 · doi:10.1016/j.physleta.2006.01.060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.