Barthel, Tobias; Castellana, Natàlia; Heard, Drew; Valenzuela, Gabriel Local Gorenstein duality for cochains on spaces. (English) Zbl 07241702 J. Pure Appl. Algebra 225, No. 2, Article ID 106495, 23 p. (2021). Reviewer: Niles Johnson (Newark) MSC: 55U30 55R35 13H10 13D45 PDF BibTeX XML Cite \textit{T. Barthel} et al., J. Pure Appl. Algebra 225, No. 2, Article ID 106495, 23 p. (2021; Zbl 07241702) Full Text: DOI
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel Derived completion for comodules. (English) Zbl 1436.55018 Manuscr. Math. 161, No. 3-4, 409-438 (2020). Reviewer: Geoffrey Powell (Angers) MSC: 55P60 13D45 14B15 55U35 PDF BibTeX XML Cite \textit{T. Barthel} et al., Manuscr. Math. 161, No. 3--4, 409--438 (2020; Zbl 1436.55018) Full Text: DOI
Barthel, Tobias; Castellana, Natàlia; Heard, Drew; Valenzuela, Gabriel Stratification and duality for homotopical groups. (English) Zbl 1426.55017 Adv. Math. 354, Article ID 106733, 61 p. (2019). Reviewer: Daniel Juan Pineda (Michoacan) MSC: 55R35 20J05 13D45 55P42 PDF BibTeX XML Cite \textit{T. Barthel} et al., Adv. Math. 354, Article ID 106733, 61 p. (2019; Zbl 1426.55017) Full Text: DOI arXiv
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel The algebraic chromatic splitting conjecture for Noetherian ring spectra. (English) Zbl 06954712 Math. Z. 290, No. 3-4, 1359-1375 (2018). MSC: 55P PDF BibTeX XML Cite \textit{T. Barthel} et al., Math. Z. 290, No. 3--4, 1359--1375 (2018; Zbl 06954712) Full Text: DOI
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel Local duality in algebra and topology. (English) Zbl 1403.55008 Adv. Math. 335, 563-663 (2018). Reviewer: David Barnes (Belfast) MSC: 55P60 13D45 14B15 55U35 55U30 PDF BibTeX XML Cite \textit{T. Barthel} et al., Adv. Math. 335, 563--663 (2018; Zbl 1403.55008) Full Text: DOI
Barthel, Tobias; Heard, Drew; Valenzuela, Gabriel Local duality for structured ring spectra. (English) Zbl 1384.55008 J. Pure Appl. Algebra 222, No. 2, 433-463 (2018). Reviewer: Steffen Sagave (Nijmegen) MSC: 55P43 14B15 13D45 PDF BibTeX XML Cite \textit{T. Barthel} et al., J. Pure Appl. Algebra 222, No. 2, 433--463 (2018; Zbl 1384.55008) Full Text: DOI
Aguerrea, M.; Valenzuela, G. On the minimal speed of traveling waves for a nonlocal delayed reaction-diffusion equation. (English) Zbl 1334.35114 Nonlinear Oscil., N.Y. 13, No. 1, 1-9 (2010) and Neliniĭni Kolyvannya 13, No. 1, 1-9 (2010). MSC: 35K57 PDF BibTeX XML Cite \textit{M. Aguerrea} and \textit{G. Valenzuela}, Nonlinear Oscil., N.Y. 13, No. 1, 1--9 (2010; Zbl 1334.35114) Full Text: DOI
Aguerrea, Maitere; Trofimchuk, Sergei; Valenzuela, Gabriel Uniqueness of fast travelling fronts in reaction-diffusion equations with delay. (English) Zbl 1152.35403 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 464, No. 2098, 2591-2608 (2008). MSC: 35K57 92D25 35K25 PDF BibTeX XML Cite \textit{M. Aguerrea} et al., Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 464, No. 2098, 2591--2608 (2008; Zbl 1152.35403) Full Text: DOI arXiv