×

Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation. (English) Zbl 1437.92057

Summary: The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.

MSC:

92C50 Medical applications (general)
92C20 Neural biology
35C07 Traveling wave solutions
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Alamia, A.; Vanrullen, R., Alpha oscillations and traveling waves: signatures of predictive coding?, PLoS Biol, 17, 10, e3000487 (2019) · doi:10.1371/journal.pbio.3000487
[2] Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A (2016) Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. bioRxiv preprint 10.1101/340224
[3] Alexander, Dm; Jurica, P.; Trengove, C.; Nikolaev, Ar; Gepshtein, S.; Zvyagintsev, M., Traveling waves and trial averaging: the nature of single-trial and averaged brain responses in large-scale cortical signals, NeuroImage, 73, 95-112 (2013) · doi:10.1016/j.neuroimage.2013.01.016
[4] Alexander, Dm; Nikolaev, Ar; Jurica, P.; Zvyagintsev, M.; Mathiak, K.; Van Leeuwen, C., Global neuromagnetic cortical fields have non-zero velocity, PLoS ONE, 11, 3, e0148413 (2016) · doi:10.1371/journal.pone.0148413
[5] Alstott, J.; Breakspear, M.; Hagmann, P.; Cammoun, L.; Sporns, O., Modeling the impact of lesions in the human brain, PLoS Comput Biol, 5, 6, e1000408 (2009) · doi:10.1371/journal.pcbi.1000408
[6] Amari, S., Dynamics of pattern formation in lateral-inhibition type neural fields, Biol Cybern, 27, 77-87 (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[7] Aru, J.; Aru, J.; Priesemann, V.; Wibral, M.; Lana, L.; Pipa, G., Untangling cross-frequency coupling in neuroscience, Curr Opin Neurobiol, 31, 51-61 (2015) · doi:10.1016/j.conb.2014.08.002
[8] Assenza, G.; Capone, F.; Di Biase, L.; Ferreri, F.; Florio, L.; Guerra, A.; Marano, M.; Paolucci, M.; Ranieri, F.; Salomone, G.; Tombini, M.; Thut, G.; Di Lazzaro, V., Oscillatory activities in neurological disorders of elderly: biomarkers to target for neuromodulation, Front Aging Neurosci, 9, 189 (2017) · doi:10.3389/fnagi.2017.00189
[9] Atasoy, S.; Donnelly, I.; Pearson, J., Human brain networks function in connectome specific harmonic waves, Nat Commun, 7, 10340 (2016) · doi:10.1038/ncomms10340
[10] Atay, Fm; Hutt, A., Neural fields with distributed transmission speeds and long-range feedback delays, SIAM J Appl Dyn Syst, 5, 4, 670-698 (2006) · Zbl 1210.34118 · doi:10.1137/050629367
[11] Azad, Td; Veeravagu, A.; Steinberg, Gk, Neurorestoration after stroke, Neurosurg Focus, 40, 5, E2 (2016) · doi:10.3171/2016.2.FOCUS15637
[12] Bahramisharif, A.; Van Gerven, Maj; Aarnoutse, Ej; Mercier, Mr; Schwartz, Th, Propagating neocortical gamma bursts are coordinated by traveling alpha waves, J Neurosci, 33, 18849-18854 (2013) · doi:10.1523/JNEUROSCI.2455-13.2013
[13] Baker, Jm; Rorden, C.; Fridriksson, J., Using transcranial direct-current stimulation to treat stroke patients with aphasia, Stroke, 41, 1229-1236 (2010) · doi:10.1161/strokeaha.109.576785
[14] Balossier, A.; Etard, O.; Descat, C.; Vivien, D.; Emery, E., Epidural electrical stimulation to improve chronic poststroke aphasia: a 5-year follow-up, Brain Stimul, 5, 3, 364-368 (2012) · doi:10.1016/j.brs.2011.04.003
[15] Balossier, A.; Etard, O.; Descat, C.; Vivien, D.; Emery, E., Epidural cortical stimulation as a treatment for poststroke aphasia: a systematic review of the literature and underlying neurophysiological mechanisms, Neurorehabil Neural Repair, 30, 2, 120-130 (2016) · doi:10.1177/1545968315606989
[16] Berthier, Ml, Poststroke aphasia, Drugs Aging, 22, 163-182 (2005) · doi:10.2165/00002512-200522020-00006
[17] Bessonov, N.; Beuter, A.; Trofimchuk, S.; Volpert, V., Cortical waves and post-stroke brain stimulation, Math Methods Appl Sci (2018) · Zbl 1425.92038 · doi:10.1002/mma.5620
[18] Bessonov, N.; Beuter, A.; Trofimchuk, S.; Volpert, V., Estimate of the travelling wave speed for an integro-differential equation, Appl Math Lett, 88, 103-110 (2019) · Zbl 1407.35045 · doi:10.1016/j.aml.2018.07.037
[19] Beuter, A.; Lefaucheur, Jp; Modolo, J., Closed-loop cortical neuromodulation in Parkinson’s disease: an alternative to deep brain stimulation?, Clin Neurophysiol, 125, 874-885 (2014) · doi:10.1016/j.clinph.2014.01.006
[20] Beuter, A.; Balossier, A.; Trofimchuk, S.; Volpert, V., Modelling of post-stroke stimulation of the cortical tissue, Math Biosci (2018) · Zbl 1409.92029 · doi:10.1016/j.mbs.2018.08.014
[21] Brasic, Jr, Hallucinations, Percept Motor Skills, 86, 851-877 (1998) · doi:10.2466/pms.1998.86.3.851
[22] Breakspear, M., Dynamic models of large-scale brain activity, Nat Neurosci, 20, 3, 340-352 (2017) · doi:10.1038/nn.4497
[23] Bullmore, E.; Sporns, O., The economy of brain network organization, Nat Rev Neurosci, 13, 336-349 (2012) · doi:10.1038/nrn3214
[24] Burkitt, Gr; Silberstein, Rb; Cadusch, Pj; Wood, Aw, Steady-state visual evoked potentials and travelling waves, Clin Neurophysiol, 111, 2, 246-258 (2000) · doi:10.1016/S1388-2457(99)00194-7
[25] Buskila, Y.; Bellot-Saez, A.; Morley, Jw, Generating brain waves, the power of astrocytes, Front Neurosci, 13, 1125 (2019) · doi:10.3389/fnins.2019.01125
[26] Canolty, Rt; Knight, Rt, The functional role of cross-frequency coupling, Trends Cogn Sci, 14, 11, 506-515 (2010) · doi:10.1016/j.tics.2010.09.001
[27] Cherney, Lr, Epidural cortical stimulation as adjunctive treatment for nonfluent aphasia: phase 1 clinical trial follow-up findings, Neurorehab Neural Repair, 30, 2, 131-142 (2016) · doi:10.1177/1545968315622574
[28] Cherney, Lr; Harvey, Rl; Babbitt, Em; Hurwitz, R.; Kaye, Rc; Lee, Jb, Epidural cortical stimulation and aphasia therapy, Aphasiology, 26, 9, 1192-1217 (2012) · doi:10.1080/02687038.2011.603719
[29] Chrostowski, M.; Yang, L.; Wilson, Hr; Bruce, Ic; Becker, S., Can homeostatic plasticity in deafferented primary auditory cortex lead to travelling waves of excitation?, J Comput Neurosci, 30, 2, 279-299 (2011) · Zbl 1446.92038 · doi:10.1007/s10827-010-0256-1
[30] Coombes, S., Waves, bumps, and patterns in neural field theories, Biol Cybern, 93, 2, 91-108 (2005) · Zbl 1116.92012 · doi:10.1007/s00422-005-0574-y
[31] Coombes, Stephen; Beim Graben, Peter; Potthast, Roland; Wright, James, Neural Fields (2014), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1291.92004
[32] Dahlem, Ma; Chronicle, Ep, A computational perspective on migraine aura, Prog Neurobiol, 74, 351-361 (2004) · doi:10.1016/j.pneurobio.2004.10.003
[33] Deco, G.; Jirsa, Vk; Robinson, Pa; Breakspear, M.; Friston, K., The dynamic brain: from spiking neurons to neural masses and cortical fields, PLoS Comput Biol, 4, 8, e1000092 (2008) · doi:10.1371/journal.pcbi.1000092
[34] Del Gaizo, J.; Fridriksson, J.; Yourganov, G.; Hillis, Ae; Hickok, G.; Misic, B., Mapping language networks using the structural and dynamic brain connectomes, eNeuro (2018) · doi:10.1523/ENEURO.0204-17.2017
[35] Duncan, Es; Small, Sl, Increased modularity of resting state networks supports improved narrative production in aphasia recovery, Brain Connect, 6, 7, 524-529 (2016) · doi:10.1089/brain.2016.0437
[36] Edelman, Gm; Gally, Ja, Reentry: a key mechanism for integration of brain function, Front Integr Neurosci, 7, 63 (2013) · doi:10.3389/fnint.2013.00063
[37] Edwards, Ca; Kouzani, A.; Lee, Kh; Ross, Ek, Neurostimulation devices for the treatment of neurologic disorders, Mayo Clin Proc, 92, 9, 1427-1444 (2017) · doi:10.1016/j.mayocp.2017.05.005
[38] Ermentrout, Gb; Kleinfeld, D., Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role, Neuron, 29, 33-44 (2001) · doi:10.1016/S0896-6273(01)00178-7
[39] Ermentrout, B.; Mcleod, B., Existence and uniqueness of travelling waves for a neural network, Proc R Soc Edinb Sect A, 123, 3, 461-478 (1993) · Zbl 0797.35072 · doi:10.1017/S030821050002583X
[40] Ermentrout, Gb; Folias, Se; Kilpatrick, Zp; Coombes, S., Spatiotemporal pattern formation in neural fields with linear adaptation, Neural fields, 119-151 (2014), Berlin: Springer, Berlin · Zbl 1462.92015
[41] Ezzyat, Y.; Kragel, Je; Burke, Jf; Levy, Df; Lyalenko, A.; Wanda, P., Direct brain stimulation modulates encoding states and memory performance in humans, Curr Biol, 27, 1-8 (2017) · doi:10.1016/j.cub.2017.03.028
[42] Ezzyat, Y.; Wanda, Pa; Levy, Df; Kadel, A.; Aka, A.; Pedisich, I., Closed-loop stimulation of temporal cortex rescues functional networks and improves memory, Nat Commun, 9, 365 (2018) · doi:10.1038/s41467-017-02753-0
[43] Feigin, Vl, Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010, Lancet, 383, 9913, 245-254 (2014) · doi:10.1016/S0140-6736(13)61953-4
[44] Fellinger, R.; Gruber, W.; Zauner, A.; Freunberger, W.; Klimesch, W., Evoked traveling alpha waves predict visual-semantic categorization-speed, NeuroImage, 59, 3379-3388 (2011) · doi:10.1016/j.neuroimage.2011.11.010
[45] Fink, Gr, New hope for ameliorating stroke-induced deficits?, Brain, 139, 1002-1004 (2017) · doi:10.1093/brain/aww034
[46] Flöel, A.; Rösser, N.; Michka, O.; Knecht, S.; Breitenstein, C., Noninvasive brain stimulation improves language learning, J Cogn Neurosci, 20, 8, 1415-1422 (2008) · doi:10.1162/jocn.2008.20098
[47] Florin, E.; Baillet, S., The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations, Neuroimage, 111, 26-35 (2015) · doi:10.1016/j.neuroimage.2015.01.054
[48] Flowers, Hl; Skoretz, Sa; Silver, Fl; Rochon, E.; Fang, J.; Flamand-Roze, C., Poststroke aphasia frequency, recovery, and outcomes: a systematic review and meta-analysis, Arch Phys Med Rehabil, 97, 2188, 201.e8 (2016) · doi:10.1016/j.apmr.2016.03.006
[49] Gerstner, W.; Kistler, Wm; Naud, R.; Paninski, L., Neuronal dynamics. From single neurons to networks and models of cognition (2014), Cambridge: Cambridge University Press, Cambridge
[50] Gkogkidis, C.; Xi Wang, A.; Schubert, T.; Gierthmühlen, M.; Kohler, F.; Schulze-Bonhage, A., Closed-loop interaction with the cerebral cortex using a novel micro-ECoG-based implant: the impact of beta vs. gamma stimulation frequencies on cortico-cortical spectral responses, Brain Comput Interfaces, 4, 4, 214-224 (2017) · doi:10.1080/2326263X.2017.1381829
[51] Grappe, A.; Sarma, Sv; Sacré, P.; Gonzàlez-Martınez, J.; Liégeois-Chauvel, C.; Alario, Fx, An intracerebral exploration of functional connectivity during word production, J Comput Neurosci (2018) · Zbl 1414.92169 · doi:10.1007/s10827-018-0699-3
[52] Gross, J.; Hoogenboom, N.; Thut, G.; Schyns, P.; Panzeri, S.; Belin, P., Speech rhythms and multiplexed oscillatory sensory coding in the human brain, PLoS Biol, 11, 12, e1001752 (2013) · doi:10.1371/journal.pbio.1001752
[53] Guggenmos, Dj; Azin, M.; Barbay, S.; Mahnken, Jd; Dunham, C.; Mohseni, P., Restoration of function after brain damage using a neural prosthesis, PNAS, 110, 52, 21177-21182 (2013) · doi:10.1073/pnas.1316885110
[54] Hamilton, Rh, Neuroplasticity in the language system: reorganization in post-stroke aphasia and in neuromodulation interventions, Restorative Neurol Neurosci, 34, 467-471 (2016) · doi:10.3233/RNN-169002
[55] Hamilton, Rh; Chrysikou, Eg; Coslett, B., Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation, Brain Lang, 118, 1-2, 40-50 (2011) · doi:10.1016/j.bandl.2011.02.005
[56] Hanslmayr, S.; Roux, F., Human memory: brain-state- dependent effects of stimulation, Curr Biol, 27, R378-R397 (2017) · doi:10.1016/j.cub.2017.03.079
[57] Harwigsen, G., Flexible redistribution in cognitive networks, Trends Cogn Sci (2018) · doi:10.1016/j.tics.2018.05.008
[58] Harwigsen, G.; Saur, D., Neuroimaging of stroke recovery from aphasia—insights into plasticity of the human language network, NeuroImage (2017) · doi:10.1016/j.neuroimage.2017.11.056
[59] Hazan, H.; Ziv, Ne, Closed Loop Experiment Manager (CLEM)—an open and inexpensive solution for multichannel electrophysiological recordings and closed loop experiments, Front Neurosci, 11, 579 (2017) · doi:10.3389/fnins.2017.00579
[60] Heitmann, S.; Boonstra, T.; Breakspear, M., A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex, PLoS Comput Biol, 9, 10, e1003260 (2013) · doi:10.1371/journal.pcbi.1003260
[61] Herron, Ja; Thompson, Mc; Brown, T.; Chizeck, Hj; Ojemann, Jg; Ko, Al, Cortical brain computer interface for closed-loop deep brain stimulation, IEEE Trans Neural Syst Rehabil Eng (2017) · doi:10.1109/TNSRE.2017.2705661
[62] Hoang, Kb; Cassar, Ir; Grill, Wm; Turner, Da, Biomarkers and stimulation algorithms for adaptive brain stimulation, Front Neurosci, 11, 564 (2017) · doi:10.3389/fnins.2017.00564
[63] Hummel, Fc; Celnik, P.; Pascual-Leone, A.; Fregni, F.; Byblow, Wd; Buetefisch, Cm, Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients, Brain Stimul, 1, 4, 370-382 (2008) · doi:10.1016/j.brs.2008.09.003
[64] Hyafil, A., Misidentifications of specific forms of cross-frequency coupling: three warnings. Improved narrative production in aphasia recovery, Brain Connect (2015) · doi:10.1089/brain.2016.0437
[65] Jackson, A.; Mavoori, J.; Fetz, Ee, Long-term motor cortex plasticity induced by an electronic neural implant, Nature, 444, 2 (2006) · doi:10.1038/nature05226
[66] Jirsa, Vk; Haken, H., Field theory of electromagnetic brain activity, Phys Rev Lett, 77, 960-963 (1996) · doi:10.1103/PhysRevLett.77.960
[67] Kern, K.; Naros, G.; Braun, C.; Weiss, D.; Gharabaghi, A., Detecting a cortical fingerprint of Parkinson’s disease for closed-loop neuromodulation, Front Neurosci, 10, 110 (2016) · doi:10.3389/fnins.2016.00110
[68] Khambhati, An; Kahn, Ae; Costantini, J.; Ezzyat, Y.; Solomon, Ea; Gross, Re; Bassett, Ds, Functional control of electrophysiological network architecture using direct neurostimulation in humans, Netw Neurosci, 3, 3, 848-877 (2019) · doi:10.1162/netn_a_00089
[69] Kielar, A.; Deschamps, T.; Chu, Rko; Jokel, R.; Khatamian, Yb; Chen, Jj; Meltzer, Ja, Identifying dysfunctional cortex: dissociable effects of stroke and aging on resting state dynamics in MEG and fMRI, Front Aging Neurosci, 8, 40 (2016) · doi:10.3389/fnagi.2016.00040
[70] Kim, Hi; Shin, Yi; Moon, Sk; Chung, Gh; Lee, Mc; Kim, Hg, Unipolar and continuous cortical stimulation to enhance motor and language deficit in patients with chronic stroke: report of 2 cases, Surg Neurol, 69, 77-80 (2008) · doi:10.1016/j.surneu.2006.12.055
[71] Kiran, S., What Is the Nature of Poststroke Language Recovery and Reorganization?, Int Sch Res Netw ISRN Neurol, 2012 (2012)
[72] Kiran, S.; Thompson, Ck, Neuroplasticity of language networks in aphasia: advances, updates, and future challenges, Front Neurol, 10, 295 (2019) · doi:10.3389/fneur.2019.00295
[73] Klimesch, W., The frequency architecture of brain and brain body oscillations: an analysis, Eur J Neurosci, 48, 2431-2453 (2018) · doi:10.1111/ejn.14192
[74] Klimesch, W.; Hanslmayr, S.; Sauseng, P.; Gruber, Wr; Doppelmayr, M., P1 and traveling alpha waves: evidence for evoked oscillations, J Neurophysiol, 97, 1311-1318 (2007) · doi:10.1152/jn.00876.2006
[75] Klingbeil, J.; Wawrzyniak, M.; Stockert, A.; Saur, D., Resting-state functional connectivity: an emerging method for the study of language networks in post-stroke aphasia, Brain Cogn, 131, 22-33 (2019) · doi:10.1016/j.bandc.2017.08.005
[76] Kohler, F.; Gkogkidi, Ca; Bentler, C.; Wang, X.; Gierthmuehlen, M.; Fischer, J., Closed-loop interaction with the cerebral cortex: a review of wireless implant technology, Brain Comput Interfaces, 4, 3, 146-154 (2017) · doi:10.1080/2326263X.2017.1338011
[77] Koleck, M.; Gana, K.; Lucot, C.; Darrigrand, B.; Mazaux, Jm; Glize, B., Quality of life in aphasic patients 1 year after a first stroke, Qual Life Res, 26, 45-54 (2017) · doi:10.1007/s11136-016-1361-z
[78] Kopell, N.; Gritton, Hj; Whittington, Ma; Kramer, Ma, Beyond the connectome: the dynome, Neuron, 83, 6, 1319-1328 (2014) · doi:10.1016/j.neuron.2014.08.016
[79] Lam, Jmc; Wodchis, Wp, The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents, Med Care, 48, 380-387 (2010) · doi:10.1097/MLR.0b013e3181ca2647
[80] Levi, T.; Bonifazi, P.; Massobrio, P.; Chiappalone, M., Editorial: closed-loop systems for next-generation neuroprostheses, Front Neurosci, 12, 26 (2018) · doi:10.3389/fnins.2018.00026
[81] Little, S.; Pogosyan, A.; Neal, S.; Zavala, B.; Zrinzo, L.; Hariz, M., Adaptive deep brain stimulation in advanced Parkinson’s disease, Ann Neurol, 74, 449-457 (2013) · doi:10.1002/ana.23951
[82] Lopes Da Silva, Fh; Blanes, W.; Kalitzin, Sn; Parra, J.; Suczynski, P.; Velis, Dn, Dynamical diseases of brain systems: different routes to epileptic seizures, IEEE Trans Biomed Eng, 50, 5, 540-548 (2003) · doi:10.1109/TBME.2003.810703
[83] López-Barroso, D.; De Diego-Balaguer, R., Language learning variability within the dorsal and ventral streams as a cue for compensatory mechanisms in aphasia recovery, Front Hum Neurosci, 11, 476 (2017) · doi:10.3389/fnhum.2017.00476
[84] Lopresti, Ma; Camacho, E.; Appelboom, G.; Connolly, Es Jr, The promising role of neuromodulation in improving ischemic stroke recovery, J Neurol Neurosurg, 1, 2, 112 (2015) · doi:10.19104/jnn.2015.112
[85] Luft, Cdb; Pereda, E.; Baniss, Mj; Bhattacharya, J., Best of both worlds: promise of combining brain stimulation and brain connectome, Front Syst Neurosci, 8, 132 (2014) · doi:10.3389/fnsys.2014.00132
[86] Mainy, N.; Jung, J.; Baciu, M.; Kahane, P.; Schoendorff, B.; Minotti, L., Cortical dynamics of word recognition, Hum Brain Mapp, 29, 1215-1230 (2008) · doi:10.1002/hbm.20457
[87] Mandonnet, E.; Sarubbo, S.; Petit, L., The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification, Front Neuroanat, 12, 94 (2018) · doi:10.3389/fnana.2018.00094
[88] Marebwa, Bk; Fridriksson, J.; Yourganov, G.; Feenaughty, L.; Rorden, C.; Bonilha, L., Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks, Sci Rep, 7, 8188 (2017) · doi:10.1038/s41598-017-07607-9
[89] Mattioli, F.; Ambrosi, C.; Mascaro, L.; Scarpazza, C.; Pasquali, P.; Frugoni, M.; Magoni, M.; Biagi, L.; Gasparotti, R., Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study, Stroke, 45, 545-552 (2014) · doi:10.1161/STROKEAHA.113.003192
[90] Meidahl, Ac; Tinkhauser, G.; Herz, Dm; Cagnan, H.; Debarros, J.; Brown, P., Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy, Mov Disord, 32, 6, 2017 (2017) · doi:10.1002/mds.27022
[91] Meijer, Hge; Coombes, S., Travelling waves in a neural field model with refractoriness, J Math Biol, 68, 1249-1268 (2014) · Zbl 1345.92044 · doi:10.1007/s00285-013-0670-x
[92] Mohr, B., Neuroplasticity and functional recovery after intensive language therapy in chronic post stroke aphasia: which factors are relevant?, Front Hum Neurosci (2017) · doi:10.3389/fnhum.2017.00332
[93] Muller, L.; Chavane, F.; Reynolds, J.; Sejnowski, Tj, Cortical travelling waves: mechanisms and computational principles, Nat Rev Neurosci, 19, 5, 255-268 (2018) · doi:10.1038/nrn.2018.20
[94] Murphy E (2017) Implications of travelling weakly coupled oscillators for the cortical language circuit. In: UCLWPL 2017
[95] Naeser, Ma; Martin, Pi; Nicholas, M.; Baker, Eh; Seekins, H.; Kobayashi, M., Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study, Brain Lang, 93, 1, 95-105 (2005) · doi:10.1016/j.bandl.2004.08.004
[96] Nishida, M.; Korzeniewska, A.; Crone, Ne; Toyoda, G.; Nakai, Y.; Ofen, N., TurkeltaubBrain network dynamics in the human articulatory loop, Clin Neurophysiol, 128, 8, 1473-1487 (2017) · doi:10.1016/j.clinph.2017.05.002
[97] Parastarfeizabadi, M.; Kouzani, Az, Advances in closed-loop deep brain stimulation devices, J NeuroEng Rehabil, 14, 79 (2017) · doi:10.1186/s12984-017-0295-1
[98] Patten, Tm; Rennie, Cj; Robinson, Pa; Gong, P., Human cortical traveling waves: dynamical properties and correlations with responses, PLoS ONE, 7, 6, e38392 (2012) · doi:10.1371/journal.pone.0038392
[99] Pinotsis, Da; Hansen, E.; Friston, Kj; Jirsa, Vk, Anatomical connectivity and the resting state activity of large cortical networks, Neuroimage, 65, 127-138 (2013) · doi:10.1016/j.neuroimage.2012.10.016
[100] Pinto, Dj; Ermentrout, Gb, Spatially structured activity in synaptically coupled neuronal networks: I. Travelling fronts and pulses, SIAM J Appl Math, 62, 1, 206-225 (2001) · Zbl 1001.92021 · doi:10.1137/S0036139900346453
[101] Pinto, Dj; Ermentrout, Gb, Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses, SIAM J Appl Math, 62, 1, 226-243 (2001) · Zbl 1070.92506 · doi:10.1137/S0036139900346465
[102] Priori, A.; Foffani, G.; Rossi, L.; Marceglia, S., Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations, Exp Neurol, 245, 77-86 (2013) · doi:10.1016/j.expneurol.2012.09.013
[103] Rabiller, G.; He, Jw; Nishijima, Y.; Wong, A.; Liu, J., Perturbation of brain oscillations after ischemic stroke: a potential biomarker for post-stroke function and therapy, Int J Mol Sci, 16, 25605-25640 (2015) · doi:10.3390/ijms161025605
[104] Rapela J (2018) Traveling waves appear and disappear in unison with produced speech. arXiv:1806.09559v1 [q-bio.NC]
[105] Richardson, Ka; Schiff, Sj; Gluckman, Bj, Control of traveling waves in the mammalian cortex, Phys Rev Lett, 94, 2, 028103 (2005) · doi:10.1103/PhysRevLett.94.028103
[106] Roberts, Ja; Gollo, Ll; Abeysuriya, Rg; Roberts, G.; Mitchell, Pb; Woolrich, Mw; Breakspear, M., Metastable brain waves, Nat Commun, 10, 1056 (2019) · doi:10.1038/s41467-019-08999-0
[107] Robinson, Pa; Rennie, Cj; Wright, Jj, Propagation and stability of waves of electrical activity in the cerebral cortex, Phys Rev E, 56, 826-840 (1997) · doi:10.1103/PhysRevE.56.826
[108] Rolston, Jd; Chang, Ef, Critical language areas show increased functional connectivity in human cortex, Cereb Cortex (2017) · doi:10.1093/cercor/bhx271
[109] Rosin, B.; Slovik, M.; Mitelman, R.; Rivlin-Etzion, M.; Haber, Sn; Israel, Z., Closed-Loop deep brain stimulation Is superior in ameliorating parkinsonism, Neuron, 72, 370-384 (2011) · doi:10.1016/j.neuron.2011.08.023
[110] Rubino, D.; Robbins, Ka; Hatsopoulos, Ng, Propagating waves mediate information transfer in the motor cortex, Nat Neurosci, 9, 12, 1549-1557 (2006) · doi:10.1038/nn1802
[111] Salimpour, Y.; Anderson, Ws, Cross-frequency coupling based neuromodulation for treating neurological disorders, Front Neurosci, 13, 125 (2019) · doi:10.3389/fnins.2019.00125
[112] Sarubbo, S.; De Benedictis, A.; Merler, S.; Mandonnet, E.; Balbi, S.; Granieri, E.; Duffau, H., Towards a functional atlas of human white matter, Hum Brain Mapp, 36, 3117-3136 (2015) · doi:10.1002/hbm.22832
[113] Sato, Tk; Nauhaus, I.; Carandini, M., Traveling waves in visual cortex, Neuron, 75, 2, 218-229 (2012) · doi:10.1016/j.neuron.2012.06.029
[114] Senk J, Korvasová K, Schuecker J, Hagen E, Tetzlaff T, Diesmann M et al (2018) Conditions for traveling waves in spiking neural networks. arXiv:1801.06046v1 [q-bio.NC]
[115] Shi, Y.; Toga, Aw, Connectome imaging for mapping human brain pathways, Mol Psychiatry, 22, 1230-1240 (2017) · doi:10.1038/mp.2017.92
[116] Shirvalkar, P.; Veuthey, Tl; Dawes, He; Chang, Ef, Closed-loop deep brain stimulation for refractory chronic pain, Front Comput Neurosci, 12, 18 (2018) · doi:10.3389/fncom.2018.00018
[117] Smania, N.; Gandolfi, M.; Aglioti, Ma; Girardi, P.; Fiaschi, A.; Girardi, F., How long is the recovery of global aphasia? Twenty-five years of follow-up in a patient with left hemisphere stroke, Neurorehab Neural Repair, 24, 9, 871-875 (2010) · doi:10.1177/1545968310368962
[118] Sporns, O., Cerebral cartography and connectomics, Philos Trans R Soc B, 370, 20140173 (2015) · doi:10.1098/rstb.2014.0173
[119] Sreekumar, V.; Wittig, Jh Jr; Sheehan, Tc; Zaghloul, Ka, Principled approaches to direct brain stimulation for cognitive enhancement, Front Neurosci, 11, 650 (2017) · doi:10.3389/fnins.2017.00650
[120] Stephan, Ke; Kamper, L.; Bozkurt, A.; Burns, Gap; Young, Mp; Kötter, R., Advanced database methodology for the collation of connectivity data on the macaque brain (CoCoMac), Philos Trans R Soc London Ser B Biol Sci, 356, 1159-1186 (2001) · doi:10.1098/rstb.2001.0908
[121] Sun, Ft; Morrell, Mj, Closed-loop neurostimulation: the clinical experience, Neurotherapeutics, 11, 553-563 (2014) · doi:10.1007/s13311-014-0280-3
[122] Swann, Nc; De Hemptinne, C.; Thompson, Mc; Miocinovic, S.; Miller, Am; Gilron, R., Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing, J Neural Eng, 15, 046006 (2018) · doi:10.1088/1741-2552/aabc9b
[123] Takahashi, K.; Saleh, M.; Penn, Rd; Hatsopoulos, Ng, Propagating waves in human motor cortex, Front Hum Neurosci, 5, 40 (2011) · doi:10.3389/fnhum.2011.00040
[124] Takahashi, K.; Sanggyun, K.; Coleman, Tp; Brown, Ka, Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex, Nat Commun, 6, 7169 (2015) · doi:10.1038/ncomms8169
[125] Tamura, Y.; Ogawa, H.; Kapeller, C.; Prueckl, R.; Takeuchi, F.; Anei, R., Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy, J Neurosurg (2016) · doi:10.3171/2015.4.JNS15193
[126] Thiel, A.; Zumbansen, A., The pathophysiology of post-stroke aphasia: a network approach, Restorative Neurol Neurosci, 34, 4, 507-518 (2016) · doi:10.3233/RNN-150632
[127] To, Wt; De Ridder, D.; Hart, J. Jr; Vanneste, S., Changing brain networks through non-invasive neuromodulation, Front Hum Neurosci, 12, 128 (2018) · doi:10.3389/fnhum.2018.00128
[128] Töpper, R.; Mottaghy, Fm; Brugmann, M.; Noth, J.; Huber, W., Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area, Exp Brain Res, 121, 371-378 (1998) · doi:10.1007/s002210050471
[129] Turi, Z.; Alekseichuk, I.; Paulus, W., On ways to overcome the magical capacity limit of working memory, PLoS Biol (2018) · doi:10.1371/journal.pbio.2005867
[130] Turkeltaub, Pe; Messing, S.; Norise, C.; Hamilton, Rh, Are networks for residual language function and recovery consistent across aphasic patients?, Neurology, 76, 1726-1734 (2011) · doi:10.1212/WNL.0b013e31821a44c1
[131] Turkeltaub, Pe; Swears, Mk; D’Mello, Am; Stoodley, Cj, Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults, Restorative Neurol Neurosci, 34, 4, 491-505 (2016) · doi:10.3233/RNN-150633
[132] Venkov, Na; Coombes, S.; Matthews, Pc, Dynamic instabilities in scalar neural field equations with space-dependent delays, Physica D, 232, 1-15 (2007) · Zbl 1127.45002 · doi:10.1016/j.physd.2007.04.011
[133] Voigt, Mb; Yussuf, Pa; Kral, A., Intracortical microstimulation modulates cortical induced responses, J Neurosci, 38, 36, 7774-7786 (2018) · doi:10.1523/JNEUROSCI.0928-18.2018
[134] Weaver, J., How brain waves help us make sense of speech, PLoS Biol, 11, 12, e1001753 (2013) · doi:10.1371/journal.pbio.1001753
[135] Whalen, Aj; Kadji, Yxh; Dahlem, Ma; Gluckman, Bj; Schiff, Sj, Control of spreading depression with electrical fields, Sci Rep, 8, 8769 (2018) · doi:10.1038/s41598-018-26986-1
[136] Wilson, Hr; Cowan, Jd, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 55-80 (1973) · Zbl 0281.92003 · doi:10.1007/BF00288786
[137] Wortman-Jutt, S.; Edwards, Dj, Transcranial direct current stimulation in poststroke aphasia recovery, Stroke (2017) · doi:10.1161/STROKEAHA.116.015626
[138] Wright, J.; Macefield, Vg; Vanschaik, A.; Tapson, Jc, A review of control strategies in closed-loop neuroprosthetic systems, Front Neurosci, 10, 312 (2016) · doi:10.3389/fnins.2016.00312
[139] Wu, Jy; Huang, X.; Zhang, C., Propagating waves of activity in the neocortex: what they are, what they do, Neuroscientist, 14, 5, 487-502 (2008) · doi:10.1177/1073858408317066
[140] Yourganov, G.; Fridriksson, J.; Rorden, C.; Gleichgerrcht, E.; Bonilha, L., Multivariate connectome-based symptom mapping in post-stroke patients: networks supporting language and speech, J Neurosci, 36, 25, 6668-6679 (2016) · doi:10.1523/JNEUROSCI.4396-15.2016
[141] Zanos, S., Closed-loop neuromodulation in physiological and translational research, Cold Spring Harb Perspect Med (2018) · doi:10.1101/cshperspect.a034314
[142] Zhang, H.; Watrous, Aj; Patel, A.; Jacobs, J., Theta and alpha oscillations are traveling waves in the human neocortex, Neuron (2018) · doi:10.1016/j.neuron.2018.05.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.