Origins of robustness in translational control via eukaryotic translation initiation factor (eIF) 2. (English) Zbl 1397.92201

Summary: Phosphorylation of eukaryotic translation initiation factor 2 (eIF2) is one of the best studied and most widely used means for regulating protein synthesis activity in eukaryotic cells. This pathway regulates protein synthesis in response to stresses, viral infections, and nutrient depletion, among others. We present analyses of an ordinary differential equation-based model of this pathway, which aim to identify its principal robustness-conferring features. Our analyses indicate that robustness is a distributed property, rather than arising from the properties of any one individual pathway species. However, robustness-conferring properties are unevenly distributed between the different species, and we identify a guanine nucleotide dissociation inhibitor (GDI) complex as a species that likely contributes strongly to the robustness of the pathway. Our analyses make further predictions on the dynamic response to different types of kinases that impinge on eIF2.


92C40 Biochemistry, molecular biology
Full Text: DOI Link


[1] Asano, K.; Krishnamoorthy, T.; Phan, L.; Pavitt, G. D.; Hinnebusch, A. G., Conserved bipartite motifs in yeast eif5 and eif2bepsilon, gtpase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eif2, EMBO J, 18, 1673-1688, (1999)
[2] Barber, G. N.; Thompson, S.; Lee, T. A.E. G.; Strom, T. E.D.; Jagust, R.; Darveau, A.; Katze, M. G., The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties, Proc. Natl. Acad. Sci. USA, 91, 4278-4282, (1994)
[3] Betney, R.; de Silva, E.; Mertens, C.; Knox, Y.; Krishnan, J.; Stansfield, I., Regulation of release factor expression using a translational negative feedback loop: a systems analysis, RNA, 18, 2320-2334, (2012)
[4] Chaouiya, C., Petri net modelling of biological networks, Brief Bioinform., 8, 210-219, (2007)
[5] Chen, J.-J., Regulation of protein synthesis by the heme-regulated eif2 kinase: relevance to anemias, Blood, 109, 2693-2699, (2006)
[6] Cherkasova, V. A.; Hinnebusch, A. G., Translational control by TOR and TAP42 through dephosphorylation of eif2alpha kinase GCN2, Genes Dev, 17, 859-872, (2003)
[7] Chu, D.; Barnes, D. J.; Von Der Haar, T., The role of trna and ribosome competition in coupling the expression of different mrnas in saccharomyces cerevisiae, Nucleic Acids Res, 39, 6705-6714, (2011)
[8] Chu, D.; Kazana, E.; Bellanger, N.; Singh, T.; Tuite, M. F.; von der Haar, T., Translation elongation can control translation initiation on eukaryotic mrnas, EMBO J, 33, 21-34, (2014)
[9] de Silva, E.; Krishnan, J.; Betney, R.; Stansfield, I., A mathematical modelling framework for elucidating the role of feedback control in translation termination, J. Theor. Biol., 264, 808-821, (2010) · Zbl 1406.92232
[10] Dey, M.; Trieselmann, B.; Locke, E. G.; Lu, J.; Cao, C.; Dar, A. C.; Krishnamoorthy, T.; Dong, J.; Sicheri, F.; Dever, T. E., PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eif2B) recognize overlapping surfaces on eif2, Mol. Cell. Biol., 25, 3063-3075, (2005)
[11] Dimelow, R. J.; Wilkinson, S. J., Control of translation initiation: a model-based analysis from limited experimental data, J. R. Soc. Interface, 6, 51-61, (2009)
[12] Dong, J.; Qiu, H.; Garcia-Barrio, M.; Anderson, J.; Hinnebusch, a. G., Uncharged trna activates GCN2 by displacing the protein kinase moiety from a bipartite trna-binding domain, Mol. Cell, 6, 269-279, (2000)
[13] Donnelly, N.; Gorman, A. M.; Gupta, S.; Samali, A., The eif2α kinases: their structures and functions, Cell. Mol. Life Sci., 70, 3493-3511, (2013)
[14] El-Haroun, E. R.; Bureau, D. P.; Cant, J. P., A mechanistic model of nutritional control of protein synthesis in animal tissues, J. Theor. Biol., 262, 361-369, (2010) · Zbl 1403.92064
[15] Fan, M. K.H.; Tits, A. L.; Doyle, J. C., Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics, IEEE Trans. Automat. Contr., 36, 25-38, (1991) · Zbl 0722.93055
[16] Firczuk, H.; Kannambath, S.; Pahle, J.; Claydon, A.; Beynon, R.; Duncan, J.; Westerhoff, H.; Mendes, P.; McCarthy, J. E., An in vivo control map for the eukaryotic mrna translation machinery, Mol. Syst. Biol., 9, 1-13, (2013)
[17] Fjeld, C. C.; Denu, J. M., Kinetic analysis of human serine/threonine protein phosphatase 2calpha, J. Biol. Chem., 274, 20336-20343, (1999)
[18] Gebauer, F.; Hentze, M. W., Molecular mechanisms of translational control, Nat. Rev. Mol. Cell Biol., 5, 827-835, (2004)
[19] (Hershey, J. W.B.; Sonenberg, N.; Mathews, M., Translational Control in Biology and Medicine, (2007), Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York)
[20] Hinnebusch, A. G., The scanning mechanism of eukaryotic translation initiation, Annu. Rev. Biochem., 83, 779-812, (2014)
[21] Jedlicka, P.; Panniers, R., Mechanism of activation of protein synthesis initiation in mitogen- stimulated T lymphocytes, J. Biol. Chem., 266, 15663-15669, (1991)
[22] Jennings, M. D.; Kershaw, C. J.; Adomavicius, T.; Pavitt, G. D., Fail-safe control of translation initiation by dissociation of eif2α phosphorylated ternary complexes, Elife, 6, e24542, (2017)
[23] Jennings, M. D.; Kershaw, C. J.; White, C.; Hoyle, D.; Richardson, J. P.; Costello, J. L.; Donaldson, I. J.; Zhou, Y.; Pavitt, G. D., Eif2β is critical for eif5-mediated GDP-dissociation inhibitor activity and translational control, Nucleic Acids Res., (2016), gkw657
[24] Jennings, M. D.; Pavitt, G. D., Eif5 has GDI activity necessary for translational control by eif2 phosphorylation, Nature, 465, 378-381, (2010)
[25] Jennings, M. D.; Zhou, Y.; Mohammad-Qureshi, S. S.; Bennett, D.; Pavitt, G. D., Eif2B promotes eif5 dissociation from eif2*GDP to facilitate guanine nucleotide exchange for translation initiation, Genes Dev, 27, 2696-2707, (2013)
[26] Kim, J.; Bates, D. G.; Postlethwaite, I.; Ma, L.; Iglesias, P. A., Robustness analysis of biochemical network models, IEE Proc. - Syst. Biol., 153, 96, (2006)
[27] Manchester, K. L., Kinetic modelling of the effect of alpha subunit phosphorylation on the activity of the protein synthesis initiation factor eif-2, Biochem. Int., 22, (1990), 623-533
[28] Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431-441, (1963) · Zbl 0112.10505
[29] Matts, R.; Levin, D.; London, I., Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis, Proc. Natl. Acad. Sci. U. S. A., 80, 2559-2563, (1983)
[30] Mohammed-Qureshi, S. S.; Jennings, M. D.; Pavitt, G. D., Clues to the mechanism of action of eif2B, the guanine-nucleotide-exchange factor for translation initiation, Biochem. Soc. Trans., 36, 658-664, (2008)
[31] Moré, J. J., The Levenberg-Marquardt algorithm: implementation and theory, (Watson, G. A., Numerical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28-July 1, 1977, (1978), Springer Berlin Heidelberg), 105-116
[32] Nika, J.; Yang, W.; Pavitt, G. D.; Hinnebusch, A. G.; Hannig, E. M., Purification and kinetic analysis of eif2B from saccharomyces cerevisiae, J. Biol. Chem., 275, 26011-26017, (2000)
[33] Price, N. T.; Welsh, G. I.; Proud, C. G., Phosphorylation of only serine-51 in protein synthesis initiation factor-2 is associated with inhibition of peptide-chain initiation in reticulocyte lysates, Biochem. Biophys. Res. Commun., 176, 993-999, (1991)
[34] Richardson, J. P.; Mohammad, S. S.; Pavitt, G. D., Mutations causing childhood ataxia with central nervous system hypomyelination reduce eukaryotic initiation factor 2B complex formation and activity, Mol. Cell. Biol., 24, 2352-2363, (2004)
[35] Segel, L. A.; Slemrod, M., The quasi-steady-state assumption: a case study in perturbation, SIAM Rev, 31, 446-477, (1989) · Zbl 0679.34066
[36] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE suite, SIAM J. Sci. Comput., 18, 1-22, (1997) · Zbl 0868.65040
[37] Singh, C. R.; Lee, B.; Udagawa, T.; Mohammad-Qureshi, S. S.; Yamamoto, Y.; Pavitt, G. D.; Asano, K., An eif5/eif2 complex antagonizes guanine nucleotide exchange by eif2B during translation initiation, EMBO J, 25, 4537-4546, (2006)
[38] Singh, C. R.; Udagawa, T.; Lee, B.; Wassink, S.; He, H.; Yamamoto, Y.; Anderson, J. T.; Pavitt, G. D.; Asano, K., Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo, J. Mol. Biol., 370, 315-330, (2007)
[39] Spirin, A. S., How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mrna? Brownian ratchet model, Biochemistry, 48, 10688-10692, (2009)
[40] von der Haar, T., A quantitative estimation of the global translational activity in logarithmically growing yeast cells, BMC syst. Biol., 2, 87, (2008)
[41] von der Haar, T.; McCarthy, J. E.G., Intracellular translation initiation factor levels in saccharomyces cerevisiae and their role in cap-complex function, Mol. Microbiol., 46, 531-544, (2002)
[42] Wortham, N. C.; Proud, C. G., Eif2B: recent structural and functional insights into a key regulator of translation, Biochem. Soc. Trans., 43, 1234-1240, (2015)
[43] You, T.; Coghill, G. M.; Brown, A. J.P., A quantitative model for mrna translation in saccharomyces cerevisiae, Yeast, 27, 785-800, (2010)
[44] Zhan, K.; Narasimhan, J.; Wek, R. C., Differential activation of eif2 kinases in response to cellular stresses in schizosaccharomyces pombe, Genetics, 1875, 1867-1875, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.