×

BEM and FEM results of displacements in a poroelastic column. (English) Zbl 1292.76046

Summary: The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution methods are often not available since they are too complicated for the complex governing sets of equations. For this reason, often some existing numerical methods are used. In this work results obtained with the finite element method are opposed to those obtained by M. Schanz [Eng. Anal. Bound. Elem. 25, No. 4–5, 363–376 (2001; Zbl 1015.74074)] using the boundary element method. Not only the influence of the number of elements and time steps on the simple example of a poroelastic column but also the impact of different values of the permeability coefficient is investigated.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M38 Boundary element methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Citations:

Zbl 1015.74074
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albers, B. (2010). Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media, Postdoctoral thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 48, Shaker, Aachen.
[2] Allard, J.F. (1993). Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials, Elsevier, Essex.
[3] Atalla, N., Hamdi, A.M. and Panneton, R. (2001). Enhanced weak integral formulation for mixed (u,p) poroelastic equations, Journal of the Acoustical Society of America 109(6): 3065-3068. · doi:10.1121/1.1365423
[4] Atalla, N., Panneton, R. and Debergue, P. (1998). A mixed pressure-displacement formulation for poroelastic materials, Journal of the Acoustical Society of America 104(3): 1444-1452. · doi:10.1121/1.424355
[5] Biot, M.A. (1941). General theory of three dimensional consolidation, Journal of Applied Physics 12(2): 155-164. · JFM 67.0837.01 · doi:10.1063/1.1712886
[6] Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid saturated porous solid, I: Low frequency range, II: Higher frequency range, Journal of the Acoustical Society of America 28(2): 168-191. · doi:10.1121/1.1908239
[7] Bonnet, G. (1987). Basic singular solutions for a poroelastic medium in the dynamic range, Journal of the Acoustical Society of America 82(5): 1758-1762. · doi:10.1121/1.395169
[8] Cheng, A.H.-D., Badmus, T. and Beskos, D.E. (1991). Integral equations for dynamic poroelasticity in frequency domain with BEM solution, Journal of Engineering Mechanics (ASCE) 117(5): 1136-1157.
[9] de Boer, R. and Ehlers, W. (1986). Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I, Technical Report 40, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH Essen, Essen.
[10] Dominguez, J. (1992). Boundary element approach for dynamic poroelastic problems, International Journal for Numerical Methods in Engineering 35(2): 307-324. · Zbl 0768.73084 · doi:10.1002/nme.1620350206
[11] Eringen, A.C. and Suhubi, S.S. (1975). Elastodynamics, Vol. II, Academic Press, New York, NY. · Zbl 0344.73036
[12] Fischer, M. (2004). The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction, Ph.D. thesis, Universität Stuttgart, Stuttgart.
[13] Goodman, M.A. and Cowin, S.C. (1972). A continuum theory of granular materials, Archive for Rational Mechanics and Analysis 44(4): 249-266. · Zbl 0243.76005 · doi:10.1007/BF00284326
[14] Göransson, P. (1995). A weighted residual formulation of the acoustic wave propagation through a flexible porous material and comparison with a limp material model, Journal of Sound and Vibration 182(3): 479-494. · doi:10.1006/jsvi.1995.0211
[15] Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, International Journal of Applied Mathematics and Computer Science 21(3): 487-498, DOI: 10.2478/v10006-011-0037-7. · Zbl 1377.74023 · doi:10.2478/v10006-011-0037-7
[16] Holler, S. (2006). Dynamisches Mehrphasenmodell mit hypoplastischer Materialformulierung der Feststoffphase, Ph.D. thesis, RWTH Aachen, Aachen.
[17] Kelder, O. and Smeulders, D.M.J. (1997). Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone, Geophysics 62(6): 1794-1796. · doi:10.1190/1.1444279
[18] Kogut, J. and Ciurej, H. (2010). A vehicle-track-soil dynamic interaction problem in sequential and parallel formulation, International Journal of Applied Mathematics and Computer Science 20(2): 295-303, DOI: 10.2478/v10006-010-0022-6. · Zbl 1196.93019 · doi:10.2478/v10006-010-0022-6
[19] Korsawe, J. and Starke, G. (2005). A least-squares mixed finite element method for Biot’s consolidation problem in porous media, SIAM Journal on Numerical Analysis 43(1): 318-339. · Zbl 1086.76041 · doi:10.1137/S0036142903432929
[20] Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006). Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches, Computer Methods in Applied Mechanics and Engineering 195(9-12): 1096-1115. · Zbl 1177.76199 · doi:10.1016/j.cma.2005.04.011
[21] Lewis, R.W. and Schrefler, BA. (1998). The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley, Chichester. · Zbl 0935.74004
[22] Naumann, K. (2004). Implementierung eines Finiten Elementes in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung poröser Medien, Master’s thesis, TU Berlin, Berlin.
[23] Panneton, R. and Atalla, N. (1997). An efficient finite element scheme for solving the threedimensional poroelasticity problem in acoustics, Journal of the Acoustical Society of America 101(6): 3287-3298. · doi:10.1121/1.418345
[24] Plona, T. J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Applied Physics Letters 36(4): 259-261. · doi:10.1063/1.91445
[25] Rackwitz, F., Naumann, K. and Savidis, S.A. (2005). Implementierung eines Finiten Elements zur Konsolidationsberechnung mit ANSYS, 23rd CAD-FEM Users’ Meeting 2005, Bonn, Germany, (on CD-ROM/DVD).
[26] Savidis, S.A., Albers, B., Tas\?an, H.E. and Savvidis, G. (2011). Finite-Elemente-Berechnungen quasistatischer und dynamischer Probleme mit einem poroelastischen Zweikomponentenmodell, Bauingenieur 5: 241-249.
[27] Savvidis, G. (2009). Implementierung eines Finiten Elements in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung von wassergesättigten Böden, Master’s thesis, TU Berlin, Berlin.
[28] Schanz, M. (2001). Application of 3d time domain boundary element formulation to wave propagation in poroelastic solids, Engineering Analysis with Boundary Elements 25(4-5): 363-376. · Zbl 1015.74074 · doi:10.1016/S0955-7997(01)00022-4
[29] Schanz, M. and Cheng, A.H.-D. (2000). Transient wave propagation in a one-dimensional poroelastic column, Acta Mechanica 145(1-4): 1-18. · Zbl 0987.74039 · doi:10.1007/BF01453641
[30] Schrefler, B.A. and Scotta, R. (2001). A fully coupled dynamic model for two-phase fluid flow in deformable porous media, Computer Methods in Applied Mechanics and Engineering 190(24-25): 3223-3246. · Zbl 0977.74019 · doi:10.1016/S0045-7825(00)00390-X
[31] Taşan, H.E. (2012). Zur Dimensionierung der Monopile-Gründungen von Offshore-Windenergieanlagen, Ph.D. thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 52, Aachen.
[32] Taşan, H.E., Rackwitz, F. and Savidis, S.A. (2010). Behaviour of cyclic laterally loaded diameter monopiles in saturated sand, Proceedings of the 7th European Conference of Numerical Methods in Geotechnical Engineering, Trondheim, Norway, pp. 889-894.
[33] von Estorff, O. and Hagen, C. (2006). Iterative coupling of FEM and BEM in 3D transient elastodynamics, Engineering Analysis with Boundary Elements 30(7): 611-622. · Zbl 1195.74202 · doi:10.1016/j.enganabound.2006.01.007
[34] von Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear, 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, Vol. 1, pp. 54-56.
[35] Wilmanski, K. (1996). Porous media at finite strains-The new model with the balance equation for porosity, Archives of Mechanics 48(4): 591-628. · Zbl 0864.73007
[36] Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering, John Wiley & Sons, West Sussex. · Zbl 0932.74003
[37] Zienkiewicz, O.C. and Shiomi, T. (1984). Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution, International Journal for Numerical and Analytical Methods in Geomechanics 8(1): 71-96. · Zbl 0526.73099 · doi:10.1002/nag.1610080106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.