×

zbMATH — the first resource for mathematics

A quasi-finite basis for multi-loop Feynman integrals. (English) Zbl 1388.81378
Summary: We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical limitations of the original procedure by employing integration by parts reduction.

MSC:
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ’t Hooft, G.; Veltman, MJG, Regularization and renormalization of gauge fields, Nucl. Phys., B 44, 189, (1972)
[2] Marciano, WJ; Sirlin, A., Dimensional regularization of infrared divergences, Nucl. Phys., B 88, 86, (1975)
[3] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys., B 585, 741, (2000) · Zbl 1042.81565
[4] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596, (2008) · Zbl 1196.81010
[5] Borowka, S.; Carter, J.; Heinrich, G., Numerical evaluation of multi-loop integrals for arbitrary kinematics with secdec 2.0, Comput. Phys. Commun., 184, 396, (2013)
[6] Carter, J.; Heinrich, G., Secdec: A general program for sector decomposition, Comput. Phys. Commun., 182, 1566, (2011) · Zbl 1262.81119
[7] Borowka, S.; Heinrich, G., Massive non-planar two-loop four-point integrals with secdec 2.1, Comput. Phys. Commun., 184, 2552, (2013) · Zbl 1349.81012
[8] Smirnov, AV; Tentyukov, MN, Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun., 180, 735, (2009) · Zbl 1198.81044
[9] Smirnov, AV; Smirnov, VA; Tentyukov, M., FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun., 182, 790, (2011) · Zbl 1214.81171
[10] Smirnov, AV, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun., 185, 2090, (2014) · Zbl 1351.81078
[11] Anastasiou, C.; Melnikov, K.; Petriello, F., A new method for real radiation at NNLO, Phys. Rev., D 69, 076010, (2004)
[12] Manteuffel, A.; Schabinger, RM; Zhu, HX, The complete two-loop integrated jet thrust distribution in soft-collinear effective theory, JHEP, 03, 139, (2014)
[13] Beneke, M.; Smirnov, VA, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys., B 522, 321, (1998)
[14] V.A. Smirnov and E.R. Rakhmetov, The Strategy of regions for asymptotic expansion of two loop vertex Feynman diagrams, Theor. Math. Phys.120 (1999) 870 [Theor. Math. Fiz.120 (1999) 64] [hep-ph/9812529] [INSPIRE]. · Zbl 0964.81053
[15] Smirnov, VA, Problems of the strategy of regions, Phys. Lett., B 465, 226, (1999)
[16] Pak, A.; Smirnov, A., Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J., C 71, 1626, (2011)
[17] Jantzen, B.; Smirnov, AV; Smirnov, VA, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J., C 72, 2139, (2012)
[18] Panzer, E., On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP, 03, 071, (2014)
[19] Panzer, E., Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun., 188, 148, (2014) · Zbl 1344.81024
[20] Panzer, E., On the analytic computation of massless propagators in dimensional regularization, Nucl. Phys., B 874, 567, (2013) · Zbl 1282.81091
[21] Brown, F., The massless higher-loop two-point function, Commun. Math. Phys., 287, 925, (2009) · Zbl 1196.81130
[22] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
[23] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt-Universität zu Berlin, Germany http://www.mathematik.hu-berlin.de/∼panzer/paper/phd.pdf (2014).
[24] Lee, RN; Smirnov, AV; Smirnov, VA, Analytic results for massless three-loop form factors, JHEP, 04, 020, (2010) · Zbl 1272.81196
[25] Gehrmann, T.; Glover, EWN; Huber, T.; Ikizlerli, N.; Studerus, C., Calculation of the quark and gluon form factors to three loops in QCD, JHEP, 06, 094, (2010) · Zbl 1288.81146
[26] Lee, RN; Smirnov, VA, Analytic ϵ-expansions of master integrals corresponding to massless three-loop form factors and three-loop g-2 up to four-loop transcendentality weight, JHEP, 02, 102, (2011) · Zbl 1294.81290
[27] Tkachov, FV, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett., B 100, 65, (1981)
[28] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159, (1981)
[29] Laporta, S., High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys., A 15, 5087, (2000) · Zbl 0973.81082
[30] A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE]. · Zbl 1219.81133
[31] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[32] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, arXiv:1408.2372 [INSPIRE]. · Zbl 1344.81030
[33] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, arXiv:1406.4513 [INSPIRE]. · Zbl 1330.81151
[34] Studerus, C., Reduze-Feynman integral reduction in C++, Comput. Phys. Commun., 181, 1293, (2010) · Zbl 1219.81133
[35] Bogner, C.; Weinzierl, S., Feynman graph polynomials, Int. J. Mod. Phys., A 25, 2585, (2010) · Zbl 1193.81072
[36] Tarasov, OV, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev., D 54, 6479, (1996) · Zbl 0925.81121
[37] Lee, RN, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys., B 830, 474, (2010) · Zbl 1203.83051
[38] Lee, RN, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl., 205-206, 135, (2010)
[39] Derkachov, SE; Honkonen, J.; Pis’mak, YM, Three-loop calculation of the random walk problem: an application of dimensional transformation and the uniqueness method, J. Phys., A 23, 5563, (1990)
[40] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett.B 302 (1993) 299 [Erratum ibid.B 318 (1993) 649] [hep-ph/9212308] [INSPIRE]. · Zbl 1007.81512
[41] Bern, Z.; Dixon, LJ; Kosower, DA, Dimensionally regulated pentagon integrals, Nucl. Phys., B 412, 751, (1994) · Zbl 1007.81512
[42] Smirnov, AV; Petukhov, AV, The number of master integrals is finite, Lett. Math. Phys., 97, 37, (2011) · Zbl 1216.81076
[43] Lee, RN; Pomeransky, AA, Critical points and number of master integrals, JHEP, 11, 165, (2013) · Zbl 1342.81139
[44] Gehrmann, T.; Huber, T.; Maître, D., Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett., B 622, 295, (2005)
[45] Smirnov, VA, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett., B 460, 397, (1999)
[46] Smirnov, VA; Veretin, OL, Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators, Nucl. Phys., B 566, 469, (2000) · Zbl 0956.81055
[47] Anastasiou, C.; Tausk, JB; Tejeda-Yeomans, ME, The on-shell massless planar double box diagram with an irreducible numerator, Nucl. Phys. Proc. Suppl., 89, 262, (2000)
[48] Binosi, D.; Theussl, L., Jaxodraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun., 161, 76, (2004)
[49] Vermaseren, JAM, Axodraw, Comput. Phys. Commun., 83, 45, (1994) · Zbl 1114.68598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.