×

zbMATH — the first resource for mathematics

Calculating three loop ladder and \(V\)-topologies for massive operator matrix elements by computer algebra. (English) Zbl 1348.81034
Summary: Three loop ladder and \(V\)-topology diagrams contributing to the massive operator matrix element \(A_{Q g}\) are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable \(N\) and the dimensional parameter \(\varepsilon\). Given these representations, the desired Laurent series expansions in \(\varepsilon\) can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of \(N\) are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of \(V\)-topologies.

MSC:
81-08 Computational methods for problems pertaining to quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81V05 Strong interaction, including quantum chromodynamics
81U35 Inelastic and multichannel quantum scattering
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Buza, M.; Matiounine, Y.; Smith, J.; Migneron, R.; van Neerven, W. L., Nuclear Phys. B, 472, 611, (1996)
[2] S. Bethke, et al. Workshop on Precision Measurements of \(\alpha_s\), arXiv:1110.0016 [hep-ph].
[3] S. Moch, S. Weinzierl, et al. High precision fundamental constants at the TeV scale, arXiv:1405.4781 [hep-ph].
[4] Alekhin, S.; Blümlein, J.; Moch, S., Phys. Rev. D, 89, 5, (2014), arXiv:1310.3059 [hep-ph]
[5] Alekhin, S.; Blümlein, J.; Daum, K.; Lipka, K.; Moch, S., Phys. Lett. B, 720, 172, (2013), arXiv:1212.2355 [hep-ph]
[6] Bierenbaum, I.; Blümlein, J.; Klein, S.; Blümlein, J.; Klein, S.; Tödtli, B., Nuclear Phys. B, Phys. Rev. D, 80, 417, (2009), arXiv:0909.1547 [hep-ph]
[7] Vermaseren, J. A.M.; Vogt, A.; Moch, S.; Vogt, A.; Moch, S.; Vermaseren, J. A.M.; Blümlein, J.; Ravindran, V., Nuclear Phys. B, Nuclear Phys. B, Nuclear Phys. B, Nuclear Phys. B, 749, 1, (2006)
[8] Bierenbaum, I.; Blümlein, J.; Klein, S., Nuclear Phys. B, 780, 40, (2007)
[9] Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Wißbrock, F., Nuclear Phys. B, 844, 26, (2011), arXiv:1008.3347 [hep-ph]
[10] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C., Nuclear Phys. B, 890, 48, (2014), arXiv:1409.1135 [hep-ph]
[11] Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C., Nuclear Phys. B, 885, 280, (2014), arXiv:1405.4259 [hep-ph]
[12] Penin, A. A.; Blümlein, J.; Klein, S., Phys. Rev. Lett., PoS ACAT, 95, 084, (2007), arXiv:0706.2426 [hep-ph]
[13] Wilson, K. G.; Brandt, R. A.; Zimmermann, W.; Frishman, Y., L ect. on elementary particle physics and quantum field theory, (Brandeis Summer Inst., vol. 1, (1970), MIT Press Cambridge), Ann. Physics, 66, 373, (1971)
[14] Karr, M., J. ACM, 28, 305, (1981)
[15] C. Schneider, Symbolic summation in difference fields (Ph.D. thesis), RISC, Johannes Kepler University, Linz Technical Report 01-17, 2001.
[16] Schneider, C., An. Univ. Vest Timiş. Ser. Mat.-Inform, J. Difference Equ. Appl., Appl. Algebra Engrg. Comm. Comput., 16, 1, (2005)
[17] Schneider, C., J. Algebra Appl., 6, 415, (2007)
[18] Schneider, C., M otives, quantum field theory, and pseudodifferential operators, (Carey, A.; Ellwood, D.; Paycha, S.; Rosenberg, S., Clay Mathematics Proceedings, vol. 12, (2010), Amer. Math. Soc), 285
[19] Schneider, C., Ann. Comb., 14, 533, (2010)
[20] Schneider, C., C omputer algebra and polynomials, applications of algebra and number theory, (Gutierrez, J.; Schicho, J.; Weimann, M., Lecture Notes in Computer Science (LNCS), vol. 8942, (2015)), 157, arXiv:13077887 [cs.SC]
[21] Schneider, C., J. Symbolic Comput., J. Symbolic Comput., 72, 82, (2016), arXiv:1408.2776 [cs.SC]
[22] Schneider, C., Sém. Lothar. Combin., 56, 1, (2007), article B56b
[23] Schneider, C., Simplifying multiple sums in difference fields, (Schneider, C.; Blümlein, J., Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, in: Texts and Monographs in Symbolic Computation, (2013), Springer Wien), 325, arXiv:1304.4134 [cs.SC] · Zbl 1315.68294
[24] Blümlein, J.; Kurth, S., Phys. Rev. D, 60, (1999)
[25] Vermaseren, J. A.M., Internat. J. Modern Phys. A, 14, 2037, (1999)
[26] Moch, S.; Uwer, P.; Weinzierl, S., J. Math. Phys., 43, 3363, (2002)
[27] Ablinger, J.; Blümlein, J.; Schneider, C., J. Math. Phys., 54, (2013), arXiv:1302.0378 [math-ph]
[28] Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C., J. Math. Phys., 55, (2014), arXiv:1407.1822 [hep-th]
[29] Ablinger, J.; Blümlein, J.; Schneider, C., J. Math. Phys., 52, (2011), arXiv:1105.6063 [math-ph]
[30] Ablinger, J.; Blümlein, J.; Schneider, C.; Ablinger, J.; Blümlein, J., (Schneider, C.; Blümlein, J., Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, (2013), Springer Wien), 523, 1, (2014), arXiv:1304.7071 [math-ph] · Zbl 1306.81141
[31] Behring, A.; Bierenbaum, I.; Blümlein, J.; De Freitas, A.; Klein, S.; Wißbrock, F., Eur. Phys. J. C, 74, 9, 3033, (2014), arXiv:1403.6356 [hep-ph]
[32] I. Bierenbaum, J. Blümlein, S. Klein, arXiv:0706.2738 [hep-ph].
[33] Bierenbaum, I.; Blümlein, J.; Klein, S.; Schneider, C., Nuclear Phys. B, 803, 1, (2008), arXiv:0803.0273 [hep-ph]
[34] Bierenbaum, I.; Blümlein, J.; Klein, S., Phys. Lett. B, 672, 401, (2009), arXiv:0901.0669 [hep-ph]
[35] Blümlein, J.; Hasselhuhn, A.; Pfoh, T., Nuclear Phys. B, 881, 1, (2014), arXiv:1401.4352 [hep-ph]
[36] Blümlein, J.; De Freitas, A.; van Neerven, W. L.; Klein, S., Nuclear Phys. B, 755, 272, (2006)
[37] Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F., Nuclear Phys. B, 882, 263, (2014), arXiv:1402.0359 [hep-ph]
[38] Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.; Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Schneider, C., Nuclear Phys. B, Nuclear Phys. B, Phys. Rev. D, 92, 114005, (2015), arXiv:1508.01449 [hep-ph]
[39] J. Lagrange, Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensis, t. II, 1760-61; Oeuvres t. I, p. 263.; C.F. Gauß, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo novo tractate, Commentationes societas scientiarum Gottingensis recentiores, Vol III, 1813, Werke Bd. V pp. 5-7.; G. Green, Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham, 1828 [Green Papers, pp. 1-115].
[40] Studerus, C., Comput. Phys. Comm., 181, 1293, (2010), arXiv:0912.2546 [physics.comp-ph]
[41] A. von Manteuffel, C. Studerus, arXiv:1201.4330 [hep-ph].
[42] R.H. Lewis, Computer Algebra System , http://home.bway.net/lewis.
[43] Bauer, C. W.; Frink, A.; Kreckel, R., Symbolic Comput., 33, 1, (2002), cs/0004015 [cs-sc]
[44] Bailey, W. N., Generalized hypergeometric series, (1935), Cambridge University Press Cambridge · Zbl 0011.02303
[45] Slater, L. J., Generalized hypergeometric functions, (1966), Cambridge University Press Cambridge · Zbl 0135.28101
[46] Appell, P.; Kampé de Fériet, J.; Appell, P.; Kampé de Fériet, J.; Exton, H.; Exton, H.; Srivastava, H. M.; Karlsson, P. W., Multiple Gaussian hypergeometric series, (1985), Ellis Horwood Chicester
[47] Schlosser, M. J., (Schneider, C.; Blümlein, J., Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, (2013), Springer Wien), 305, arXiv:1305.1966 [math.CA]
[48] Barnes, E. W.; Mellin, H., Proc. Lond. Math. Soc. (2), Q. J. Math., Math. Ann., 68, 305, (1910)
[49] Almkvist, G.; Zeilberger, D.; Apagodu, M.; Zeilberger, D., J. Symbolic Comput., Adv. Appl. Math. (Special Regev Issue), 37, 139, (2006)
[50] Kotikov, A. V.; Remiddi, E.; Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E.; Gehrmann, T.; Remiddi, E., Phys. Lett. B, Nuovo Cimento A, Acta Phys. Polon. B, Nuovo Cimento A, Nuclear Phys. B, 580, 485, (2000)
[51] Gerhold, S., Uncoupling systems of linear ore operator equations, (2002), RISC, J. Kepler University, Linz, (Master’s thesis)
[52] Henn, J. M., Phys. Rev. Lett., 110, (2013), arXiv:1304.1806 [hep-th]
[53] Blümlein, J., Comput. Phys. Comm., 180, 2218, (2009), arXiv:0901.3106 [hep-ph]
[54] J. Blümlein, A. Hasselhuhn, C. Schneider, PoS (RADCOR 2011), 032, arXiv:1202.4303 [math-ph].
[55] Ablinger, J.; Ablinger, J., A computer algebra toolbox for harmonic sums related to particle physics, PoS LL, 2014, 019, (2009), J. Kepler University Linz, arXiv:1011.1176 [math-ph]
[56] J. Ablinger, Ph.D. Thesis, J. Kepler University Linz, 2012, arXiv:1305.0687 [math-ph].
[57] Ablinger, J.; Blümlein, J.; Hasselhuhn, A.; Klein, S.; Schneider, C.; Wißbrock, F., Nuclear Phys. B, 864, 52, (2012), arXiv:1206.2252 [hep-ph]
[58] Ablinger, J.; Blümlein, J.; Raab, C.; Schneider, C.; Wißbrock, F., Nuclear Phys. B, 885, 409, (2014), arXiv:1403.1137 [hep-ph]
[59] Blümlein, J., Comput. Phys. Comm., 159, 19, (2004)
[60] J. Blümlein, Proceedings of the Workshop Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Institute, Boston University, June 2-13, 2008, in: A. Carey, D. Ellwood, S. Paycha, S. Rosenberg (Eds.) Clay Mathematics Proceedings, vol. 12, 2010, p. 167, arXiv:0901.0837 [math-ph].
[61] Blümlein, J.; Klein, S.; Schneider, C.; Stan, F., J. Symbolic Comput., 47, 1267, (2012), arXiv:1011.2656 [cs.SC]
[62] Weinzierl, S., Computer algebra in quantum field theory: integration, summation and special functions, (Schneider, C.; Blümlein, J., Texts & Monographs in Symbolic Computation, (2013), Springer Wien), 381, arXiv:13016918 [hep-ph]
[63] Fleischer, J.; Kotikov, A. V.; Veretin, O. L., Nuclear Phys. B, 547, 343, (1999)
[64] Davydychev, A. I.; Kalmykov, M. Y., Nuclear Phys. B, 699, 3, (2004), arXiv:0303162 [hep-th]
[65] Weinzierl, S., J. Math. Phys., 45, 2656, (2004), arXiv:0402131 [hep-ph]
[66] Schneider, C.; Abramov, S. A.; Petkovšek, M.; Schneider, C.; Schneider, C., (Winkler, F.; Negru, V.; Ida, T.; Jebelean, T.; Petcu, D.; Watt, S.; Zaharie, D., Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, 15th International Symposium, (2015), IEEE Computer Society), 21, 1, 26, (2010), arXiv:1412.2782v1 [cs.SC]
[67] Petkovšek, M.; Abramov, S. A.; Petkovšek, M.; Hendriks, P. A.; Singer, M. F.; Bronstein, M., (von zur Gathen, J., Proc. ISSAC’94, 169, (1994), ACM Press), J. Symbolic Comput., J. Symbolic Comput., 29, 6, 841, (2000)
[68] Abramov, S. A.; Gosper, R. W.; Zeilberger, D.; Zeilberger, D.; Paule, P.; Riese, A.; Ismail, M. E.H.; Rahman, M.; Bauer, A.; Petkovšek, M.; Chyzak, F.; Koutschan, C., Special functions, q-series and related topics, (Schneider, C.; Blümlein, J., Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, in: Texts and Monographs in Symbolic Computation, (2013), Springer Wien), 217, 4-5, 171, (2000), arXiv:1307.4554 [cs.SC]
[69] Wilf, H. S.; Zeilberger, D.; Zeilberger, D.; Wegschaider, K., Computer generated proofs of binomial multi-sum identities, Invent. Math., J. Comput. Appl. Math., 32, 321, (1997), RISC, Johannes Kepler University, (Master’s thesis)
[70] Wißbrock, F., \(O(\alpha_s^3)\) contributions to the heavy flavor Wilson coefficients of the structure function \(F_2(x, Q^2)\) at \(Q^2 \gg m^2\), (2015), TU Dortmund, (Ph.D. thesis)
[71] Brown, F. C.S., Comm. Math. Phys., 287, 925, (2009), arXiv:0804.1660 [math.AG]
[72] Panzer, E., J. High Energy Phys., 1403, 071, (2014), arXiv:1401.4361 [hep-th]
[73] von Manteuffel, A.; Panzer, E.; Schabinger, R. M., J. High Energy Phys., 1502, 120, (2015), arXiv:1411.7392 [hep-ph]
[74] Laporta, S., Internat. J. Modern Phys. A, 15, 5087, (2000)
[75] Schneider, C.; De Freitas, A.; Blümlein, J., PoS LL, 2014, 017, (2014), arXiv:1407.2537 [cs.SC]
[76] Zürcher, B., Rationale normalformen von pseudo-linearen abbildungen, (1994), Mathematik, ETH Zürich, (Master’s thesis)
[77] S.A. Abramov, E.V. Zima, Proc. Int. Conf. on Computational Modelling and Computing in Physics, Dubna, RU, Sept. 16-26, 1996, p. 16.; A. Bostan, F. Chyzak, E. de Panafieu, ISSAC’13 June 26-29, 2013, Boston, arXiv:1301.5414 [cs.SC] and references therein.
[78] Tancredi, L., Nuclear Phys. B, 901, 282, (2015), arXiv:1509.03330 [hep-ph]
[79] Ablinger, J.; Blümlein, J.; Round, M.; Schneider, C., PoS LL, 050, (2012), arXiv:1210.1685 [cs.SC]
[80] Raab, C. G., Definite integration in differential fields, (2012), Johannes Kepler University Linz, Austria, (Ph.D. thesis)
[81] Risch, R. H.; Bronstein, M., Symbolic integration I—transcendental functions, Trans. Amer. Math. Soc., 139, 167, (2005), Springer Berlin
[82] J. Ablinger, et al. DESY 15-112.
[83] Blümlein, J.; Hasselhuhn, A.; Klein, S.; Schneider, C., Nuclear Phys. B, 866, 196, (2013), arXiv:1205.4184 [hep-ph]
[84] Yndurain, F. J., The theory of quark and gluon interatctions, 474, (2006), Springer Berlin · Zbl 1119.81102
[85] S.W.G. Klein, Mellin moments of heavy flavor contributions to \(F_2(x, Q^2)\) at NNLO, (Ph.D. thesis). arXiv:0910.3101 [hep-ph].
[86] Czakon, M.; Smirnov, A. V.; Smirnov, V. A., Comput. Phys. Comm., Eur. Phys. J. C, 62, 445, (2009), arXiv:0901.0386 [hep-ph]
[87] Schneider, C., Adv. Appl. Math., 34, 740, (2005)
[88] J. Ablinger, J. Blümlein, C. Schneider, 2015, in preparation.
[89] Kauers, M., Computer algebra in quantum field theory: integration, summation and special functions, (Schneider, C.; Blümlein, J., Texts & Monographs in Symbolic Computation, (2013), Springer Wien), 119
[90] Nörlund, N. E., Vorlesungen über differenzenrechnung, (1924), Springer Berlin, reprinted by (Chelsea Publ. Comp., New York, 1954) · JFM 50.0315.02
[91] Stanley, R., Enumerative combinatorics, vol. 1, (1997), Cambridge University, Press · Zbl 0889.05001
[92] Steinhauser, M., Comput. Phys. Comm., 134, 335, (2001)
[93] Blümlein, J.; Broadhurst, D. J.; Vermaseren, J. A.M., Comput. Phys. Comm., 181, 582, (2010), arXiv:0907.2557 [math-ph]
[94] Vermaseren, J. A.M., Comput. Phys. Comm., 83, 45, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.