×

Slepton pair production in association with a jet: NLO-QCD corrections and parton-shower effects. (English) Zbl 1388.81012

Summary: We present a calculation of the next-to-leading order QCD corrections to slepton pair production in association with a jet at the LHC together with their implementation in the POWHEG BOX. For the simulation of parton-shower effects and the decays of the sleptons we employ the multi-purpose Monte-Carlo program PYTHIA. We discuss the impact of next-to-leading order QCD corrections on experimentally accessible distributions and illustrate how the parton shower can modify observables that are sensitive to QCD radiation effects. Having full control on the hard jet in the process, we provide precise predictions also for monojet analyses.

MSC:

81-08 Computational methods for problems pertaining to quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] ATLAS physics results webpage, https://twiki.cern.ch/twiki/bin/view/AtlasPublic.
[4] CMS physics results webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults.
[5] ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, Phys. Lett.B 718 (2013) 879[arXiv:1208.2884] [INSPIRE].
[6] ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \[\sqrt{s}=7 \sqrt{s}=7\] TeV pp collisions with the ATLAS detector, Phys. Lett.B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].
[7] CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, JHEP11 (2012) 147 [arXiv:1209.6620] [INSPIRE].
[8] H.-U. Martyn and G.A. Blair, Determination of sparticle masses and SUSY parameters, hep-ph/9910416 [INSPIRE].
[9] A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e+e−and e−e−linear colliders, Eur. Phys. J.C 34 (2004) 487 [hep-ph/0310182] [INSPIRE].
[10] A. Freitas, A. von Manteuffel and P.M. Zerwas, Slepton production at e+e−and e−e−linear colliders: addendum, Eur. Phys. J.C 40 (2005) 435 [hep-ph/0408341] [INSPIRE]. · doi:10.1140/epjc/s2005-02148-6
[11] A. Freitas, Feasibility of slepton precision measurements at a muon collider, arXiv:1107.3853 [INSPIRE].
[12] H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev.D 57 (1998) 5871 [hep-ph/9712315] [INSPIRE].
[13] W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett.83 (1999) 3780 [Erratum ibid.100 (2008) 029901] [hep-ph/9906298] [INSPIRE].
[14] W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
[15] G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair production at the CERN LHC, Phys. Rev.D 74 (2006) 015001 [hep-ph/0603074] [INSPIRE].
[16] G. Bozzi, B. Fuks and M. Klasen, Threshold resummation for slepton-pair production at hadron colliders, Nucl. Phys.B 777 (2007) 157 [hep-ph/0701202] [INSPIRE]. · doi:10.1016/j.nuclphysb.2007.03.052
[17] G. Bozzi, B. Fuks and M. Klasen, Joint resummation for slepton pair production at hadron colliders, Nucl. Phys.B 794 (2008) 46 [arXiv:0709.3057] [INSPIRE]. · doi:10.1016/j.nuclphysb.2007.10.021
[18] A. Broggio, M. Neubert and L. Vernazza, Soft-gluon resummation for slepton-pair production at hadron colliders, JHEP05 (2012) 151 [arXiv:1111.6624] [INSPIRE]. · doi:10.1007/JHEP05(2012)151
[19] I. Fridman-Rojas and P. Richardson, Next-to-leading order simulation of slepton pair production, arXiv:1208.0279 [INSPIRE].
[20] B. Jager, A. von Manteuffel and S. Thier, Slepton pair production in the POWHEG BOX, JHEP10 (2012) 130 [arXiv:1208.2953] [INSPIRE]. · doi:10.1007/JHEP10(2012)130
[21] G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — April 1991, Comput. Phys. Commun.67 (1992) 465 [INSPIRE]. · Zbl 0875.65018 · doi:10.1016/0010-4655(92)90055-4
[22] G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [INSPIRE]. · doi:10.1088/1126-6708/2001/01/010
[23] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE]. · Zbl 1368.81015 · doi:10.1088/1126-6708/2006/05/026
[24] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE]. · doi:10.1088/1126-6708/2004/11/040
[25] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. · doi:10.1088/1126-6708/2007/11/070
[26] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. · Zbl 1290.81155 · doi:10.1007/JHEP06(2010)043
[27] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].
[28] T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun.81 (1994) 357 [hep-ph/9401258] [INSPIRE]. · doi:10.1016/0010-4655(94)90084-1
[29] J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP09 (2007) 028 [arXiv:0706.2334] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/028
[30] J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP07 (2012) 092 [arXiv:1202.5475] [INSPIRE]. · doi:10.1007/JHEP07(2012)092
[31] R. Gavin et al., Matching squark pair production at NLO with parton showers, JHEP10 (2013) 187 [arXiv:1305.4061] [INSPIRE]. · doi:10.1007/JHEP10(2013)187
[32] G.-C. Cho et al., Weak boson fusion production of supersymmetric particles at the CERN LHC, Phys. Rev.D 73 (2006) 054002 [hep-ph/0601063] [INSPIRE].
[33] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE]. · doi:10.1016/0550-3213(96)00110-1
[34] W. Hollik and D. Stöckinger, Regularization and supersymmetry restoring counterterms in supersymmetric QCD, Eur. Phys. J.C 20 (2001) 105 [hep-ph/0103009] [INSPIRE]. · doi:10.1007/s100520100651
[35] J.C. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev.D 18 (1978) 242 [INSPIRE].
[36] P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys.B 327 (1989) 49 [Erratum ibid.B 335 (1990) 260] [INSPIRE].
[37] S. Berge, W. Hollik, W.M. Mosle and D. Wackeroth, SUSY QCD one-loop effects in (un)polarized top-pair production at hadron colliders, Phys. Rev.D 76 (2007) 034016 [hep-ph/0703016] [INSPIRE].
[38] S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.177 (1969) 2426 [INSPIRE]. · doi:10.1103/PhysRev.177.2426
[39] J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ-model, Nuovo Cim.A 60 (1969) 47 [INSPIRE]. · doi:10.1007/BF02823296
[40] D. Kreimer, The γ5problem and anomalies: a Clifford algebra approach, Phys. Lett.B 237 (1990) 59 [INSPIRE]. · doi:10.1016/0370-2693(90)90461-E
[41] J.G. Korner, D. Kreimer and K. Schilcher, A practicable γ5scheme in dimensional regularization, Z. Phys.C 54 (1992) 503 [INSPIRE].
[42] S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett.B 303 (1993) 113 [hep-ph/9302240] [INSPIRE]. · doi:10.1016/0370-2693(93)90053-K
[43] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE]. · Zbl 0782.68091 · doi:10.1006/jcph.1993.1074
[44] J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE]. · Zbl 1344.81026
[45] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
[46] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE]. · Zbl 1317.68286 · doi:10.1016/j.cpc.2012.12.028
[47] C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun.181 (2010) 1293 [arXiv:0912.2546] [INSPIRE]. · Zbl 1219.81133 · doi:10.1016/j.cpc.2010.03.012
[48] A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE]. · Zbl 1219.81133
[49] C. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symbol. Comput.33 (2002) 1 [cs.sc/0004015]. · Zbl 1017.68163 · doi:10.1006/jsco.2001.0494
[50] R.H. Lewis, Computer algebra system Fermat webpage, http://www.bway.net/∼lewis.
[51] R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/002
[52] G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun.66 (1991) 1 [INSPIRE]. · Zbl 0997.65518 · doi:10.1016/0010-4655(91)90002-3
[53] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE]. · Zbl 0994.81082 · doi:10.1016/S0010-4655(01)00290-9
[54] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE]. · doi:10.1016/S0010-4655(98)00173-8
[55] T. Hahn, A Mathematica interface for FormCalc-generated code, Comput. Phys. Commun.178 (2008) 217 [hep-ph/0611273] [INSPIRE]. · doi:10.1016/j.cpc.2007.09.004
[56] A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys.B 658 (2003) 175 [hep-ph/0212259] [INSPIRE]. · Zbl 1027.81517 · doi:10.1016/S0550-3213(03)00184-6
[57] S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP01 (2012) 137 [arXiv:1110.5251] [INSPIRE]. · doi:10.1007/JHEP01(2012)137
[58] S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP01 (2011) 095 [arXiv:1009.5594] [INSPIRE]. · Zbl 1214.81343 · doi:10.1007/JHEP01(2011)095
[59] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. · Zbl 1369.81126 · doi:10.1140/epjc/s10052-009-1072-5
[60] M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
[61] P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP07 (2004) 036 [hep-ph/0311123] [INSPIRE]. · doi:10.1088/1126-6708/2004/07/036
[62] B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun.180 (2009) 8 [arXiv:0801.0045] [INSPIRE]. · doi:10.1016/j.cpc.2008.08.004
[63] ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \[\sqrt{s}=8 \sqrt{s}=8\] TeV with the ATLAS detector, JHEP05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
[64] CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W , Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J.C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
[65] M. Cacciari, G.P. Salam and G. Soyez, The anti-ktjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE]. · Zbl 1369.81100 · doi:10.1088/1126-6708/2008/04/063
[66] M. Cacciari and G.P. Salam, Dispelling the N3myth for the ktjet-finder, Phys. Lett.B 641 (2006) 57 [hep-ph/0512210] [INSPIRE]. · doi:10.1016/j.physletb.2006.08.037
[67] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE]. · Zbl 1393.81007 · doi:10.1140/epjc/s10052-012-1896-2
[68] R. Gavin and M.K. Trenkel, SUSY QCD corrections to electroweak gauge boson production with an associated jet at the LHC, JHEP01 (2012) 036 [arXiv:1109.3445] [INSPIRE]. · Zbl 1306.81338 · doi:10.1007/JHEP01(2012)036
[69] M.R. Buckley, J.D. Lykken, C. Rogan and M. Spiropulu, Super-razor and searches for sleptons and charginos at the LHC, Phys. Rev.D 89 (2014) 055020 [arXiv:1310.4827] [INSPIRE].
[70] T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W+W−, W Z and ZZ production in the POWHEG BOX, JHEP11 (2011) 078 [arXiv:1107.5051] [INSPIRE]. · doi:10.1007/JHEP11(2011)078
[71] J.F. Gunion and S. Mrenna, A study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev.D 62 (2000) 015002 [hep-ph/9906270] [INSPIRE].
[72] C. Han et al., Probing light Higgsinos in natural SUSY from monojet signals at the LHC, JHEP02 (2014) 049 [arXiv:1310.4274] [INSPIRE]. · doi:10.1007/JHEP02(2014)049
[73] P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP03 (2014) 060 [arXiv:1312.7350] [INSPIRE]. · doi:10.1007/JHEP03(2014)060
[74] H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev.D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.