×

On lateral-torsional buckling of discrete elastic systems: a nonlocal approach. (English) Zbl 1406.74375

Summary: The lateral-torsional buckling of a discrete repetitive elastic beam-like structure, composed of rigid links connected by bending and torsional elastic springs, is investigated herein using discrete and continuum approaches. It is shown that the governing equations of the microstructured model are equivalent to a finite difference formulation of a continuous lateral-torsional buckling problem. The discrete equations are introduced through variational arguments and solved exactly for the hinged-hinged boundary conditions using a finite difference approach. A nonlocal equivalent continuum is sought via a continualization method. It is shown that the equivalent continuum is an Eringen’s based elastic nonlocal continuum, which perfectly fits the exact discrete problem. The length scale effect related to the size of the repetitive cell tends to soften the lateral-torsional buckling limit of the asymptotically local continuum. Prandtl’s lateral-torsional buckling solution is a particular case, associated with an infinite number of cells. Warping can also be included into the discrete thin-walled structural model, leading to a microstructured-based nonlocal thin-walled model. Love’s equations augmented by the so-called Vlasov effect (warping bimoment) are used to compare the nonlocal approach with the one arising from the continualization of the discrete equation. It is shown that, in this last case, the length scale effect may depend on the warping stiffness.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G60 Bifurcation and buckling
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andrianov, I. V.; Awrejcewicz, J.; Ivankov, O., On an elastic dissipation model as continuous approximation for discrete media, Math. Probl. Eng., 1-8, (2006), 27373
[2] Andrianov, I. V.; Awrejcewicz, J.; Weichert, D., Improved continuous models for discrete media, Math. Probl. Eng., 1-35, (2010), 986242 · Zbl 1191.76102
[3] Atanackovic, T. M., Stability theory of elastic rods, series on stability, Vib. Control Syst. Ser., A, 1, (1997) · Zbl 0928.74002
[4] Attard, M.; Kim, M. Y., Lateral buckling of beams with shear deformations - a hyperelastic formulation, Int. J. Solids Struct., 47, 2825-2840, (2010) · Zbl 1196.74050
[5] Baker, J. F.; Horne, M. R.; Heyman, J., The Steel Skeleton, vol. II, (1956), Cambridge University Press Cambridge
[6] Bergou, M.; Wardetzky, M.; Robinson, S.; Audoly, B.; Grinspun, E., Discrete elastic rods, ACM Trans. Graph., 27, 3, 63:1-63:12, (2008)
[7] Challamel, N.; Wang, C. M., The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnology, 19, 345703, (2008)
[8] Challamel, N.; Wang, C. M., On lateral-torsional buckling of non-local beams, Adv. Appl. Math. Mech., 3, 389-398, (2010)
[9] Challamel, N.; Ameur, M., Out-of-plane buckling of microstructured beams: a gradient elasticity approach, J. Eng. Mech., 139, 8, 1036-1046, (2013)
[10] Challamel, N.; Andrade, A.; Camotim, D., On the use of spring models to analyse the lateral-torsional buckling behaviour of cracked beams, Thin-Walled Struct., 73, 121-130, (2013)
[11] Challamel, N.; Lerbet, J.; Wang, C. M.; Zhang, Z., Analytical length scale calibration of nonlocal continuum from a microstructured buckling model, Z. Angew. Math. Mech., 94, 5, 402-413, (2014) · Zbl 1302.74069
[12] Challamel, N.; Wang, C. M.; Elishakoff, I., Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis, Eur. J. Mech. A/Solids, 44, 125-135, (2014) · Zbl 1406.74376
[13] Challamel, N.; Zhang, Z.; Wang, C. M., Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams, J. Nanomech. Micromech. ASCE, (2014), (in press-a)
[14] Challamel, N.; Lerbet, J.; Wang, C. M., On buckling of granular columns with shear interaction: discrete versus nonlocal approaches, J. Appl. Phys., 115, 234902, (2014)
[15] Challamel, N.; Zhang, Z.; Wang, C. M.; Reddy, J. N.; Wang, Q.; Michelitsch, T.; Collet, B., On non-conservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach, Arch. Appl. Mech., (2014), (in press-b) · Zbl 1341.74094
[16] Domokos, G., Qualitative convergence in the discrete approximation of the Euler problem, Mech. Struct. Mach., 21, 4, 529-543, (1993)
[17] Duan, W.; Challamel, N.; Wang, C. M.; Ding, Z., Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams, J. Appl. Phys., 114, 104312, (2013), 1-11
[18] El Naschie, M. S., Stress, stability and chaos in structural engineering: an energy approach, (1990), McGraw-Hill New York
[19] Grober, M. K., Ein beispiel der anwendung der kirchhoffschen stabgleichungen, Phys. Zeitschr., 15, 460-462, (1914), (in German) · JFM 45.1022.03
[20] Hencky, H., Über die angenäherte Lösung von stabilitätsproblemen im raummittels der elastischen gelenkkette, Der Eisenbau, 11, 437-452, (1920), (in German)
[21] Love, A. E.H., A treatise on the mathematical theory of elasticity, (1944), Dover Publications New York · Zbl 0063.03651
[22] Luongo, A.; Zulli, D., Mathematical models of beams and cables, (2013), ISTE-Wiley
[23] Prandtl, L., Kipperscheinungen. dissertation der universität München, (Ludwig Prandtl Gesammelte Abhandlungen, Erster Teil, (1899), Springer-Verlag Berlin), 10-74, 1961
[24] Reissner, E., On a variational analysis of finite deformation of prismatical beams and on the effect of warping stiffness on buckling loads, J. Appl. Math. Phys., 35, 247-251, (1984) · Zbl 0553.73029
[25] Reissner, E.; Reissner, J. E.; Wan, F. Y.M., On lateral buckling of end-loaded cantilevers, including the effect of warping stiffness, Comput. Mech., 2, 137-147, (1987) · Zbl 0614.73049
[26] Rosenau, P., Dynamics of nonlinear mass-spring chains near the continuum limit, Phys. Lett. A, 118, 5, 222-227, (1986)
[27] Rosenau, P., Dynamics of dense lattices, Phys. Rev. B, 36, 11, 5868-5876, (1987)
[28] Salvadori, M. G., Numerical computation of buckling loads by finite differences, Trans. ASCE, 116, 590-624, (1951), (590-636 with the discussion)
[29] Seide, P., Accuracy of some numerical methods for column buckling, J. Eng. Mech., 101, 5, 549-560, (1975)
[30] Silverman, I. K., Discussion on the paper of “salvadori M.G., numerical computation of buckling loads by finite differences, trans. ASCE, 116, 590-636, 1951”, Trans. ASCE, 116, 625-626, (1951)
[31] Simitses, G. J.; Hodges, D. H., Fundamentals of structural stability, (2006), Elsevier Burlington · Zbl 1112.74001
[32] Timoshenko, S. P., Einige stabilitätsprobleme der elastizitätstheorie, Z. Math. Phys., 58, 337-385, (1910) · JFM 41.0901.01
[33] Timoshenko, S. P., Sur la stabilité des systèmes élastiques - application d’une nouvelle méthode à la recherche de la stabilité de certaines parties constitutives des ponts, Ann. Ponts Chaussées, 39, 73-134, (1913)
[34] Timoshenko, S. P.; Gere, J. M., Theory of elastic stability, (1961), McGraw Hill New York
[35] Trahair, N. S., Flexural-torsional buckling of structures, (1993), E & FN Spon (Chapman & Hall) London
[36] Trefftz, E., Über die ableitung der stabilitätskriterien des elastischen gleichgewichts aus der elastizitätstheorie endlicher deformationen, (Oseen, A. C.W.; Weibull, W., -, Proc., 3rd Int. Congress of Applied Mechanics (Stockholm), vol. 3, (1930), AB. Sveriges Kitografiska Tryckerier Stockholm, Sweden), 44-50, (in German)
[37] Trefftz, E., Zur theorie der stabilität des elastischen gleichgewichts, Z. Angew. Math. Mech., 13, 2, 160-165, (1933), (in German) · JFM 59.0737.07
[38] Vacharajittiphan, P.; Woolcock, S. T.; Trahair, N. S., Effect of in-plane deformation on lateral buckling, J. Struct. Mech., 3, 29-60, (1974)
[39] Wang, C. T., Discussion on the paper of “salvadori M.G., numerical computation of buckling loads by finite differences”, Trans. ASCE, 116, 629-631, (1951)
[40] Wang, C. T., Applied elasticity, (1953), McGraw-Hill New-York · Zbl 0053.43902
[41] Wang, C. M.; Zhang, Z.; Challamel, N.; Duan, W. H., Calibration of Eringen’s small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model, J. Phys. D Appl. Phys., 46, 345501, (2013)
[42] Wattis, J. A.D., Quasi-continuum approximations to lattice equations arising from the discrete non-linear telegraph equation, J. Phys. A Math. Gen., 33, 5925-5944, (2000) · Zbl 0953.37022
[43] Zhang, Z.; Challamel, N.; Wang, C. M., Eringen’s small length scale coefficient for buckling of nonlocal Timoshenko beam based on a microstructured beam model, J. Appl. Phys., 114, 114902, (2013), 1-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.