×

Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. (English) Zbl 1328.81030

Summary: Here in this study we propose an efficient entanglement concentration protocol (ECP) for separate nitrogen-vacancy (NV) centers, resorting to the single-photon input-output process of the NV center and microtoroidal resonator coupled system. In the proposed ECP, one ancillary single-photon is prepared and passed through a hybrid quantum circuit. By measuring the photon under the suitable polarization basis, maximally entangled state between the separate NV centers can be obtained with a certain success probability. The solid entanglement will be preserved during the process, which can be iterated several rounds to obtain an optimal total success probability. We also discuss the experimental feasibility of the protocol by considering current technologies, and we believe that the protocol is useful in the future applications of long-distance quantum communication and distributed quantum computation.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996) · doi:10.1103/PhysRevLett.76.722
[2] Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776 (2013) · Zbl 1297.81039 · doi:10.3390/e15051776
[3] Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996) · doi:10.1103/PhysRevA.53.2046
[4] Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999) · doi:10.1103/PhysRevA.60.194
[5] Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001) · doi:10.1103/PhysRevA.64.012304
[6] Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001) · doi:10.1103/PhysRevA.64.014301
[7] Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003) · doi:10.1103/PhysRevLett.90.207901
[8] Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343 (2003) · doi:10.1038/nature01358
[9] Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008) · doi:10.1103/PhysRevA.77.062325
[10] Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf. Comput. 11, 988 (2011) · Zbl 1238.81040
[11] Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012) · doi:10.1103/PhysRevA.85.012307
[12] Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012) · doi:10.1103/PhysRevA.85.042302
[13] Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012) · doi:10.1103/PhysRevA.85.022311
[14] Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1399 (2012) · doi:10.1364/JOSAB.29.001399
[15] Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272 (2010) · Zbl 1234.81045
[16] Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013) · doi:10.1103/PhysRevA.88.012302
[17] Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547 (2014) · doi:10.1364/OE.22.006547
[18] Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005) · doi:10.1103/PhysRevA.71.064301
[19] Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373, 1823 (2009) · Zbl 1229.81035 · doi:10.1016/j.physleta.2009.03.051
[20] Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Inf. Process. 13, 825 (2014) · Zbl 1291.81057 · doi:10.1007/s11128-013-0694-6
[21] Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012) · doi:10.1103/PhysRevA.86.034305
[22] Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093 (2013) · doi:10.1364/OE.21.004093
[23] Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012) · doi:10.1103/PhysRevA.86.012323
[24] Li, T., Yang, G.J., Deng, F.G.: Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22, 23897 (2014) · doi:10.1364/OE.22.023897
[25] Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004) · doi:10.1103/PhysRevLett.93.130501
[26] Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F., Rabeau, J.R., Stavrias, N., Greentree, A.D., Prawer, S., Meijer, J., Twamley, J., Hemmer, P.R., Wrachtrup, J.: Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408-413 (2006) · doi:10.1038/nphys318
[27] Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008) · doi:10.1126/science.1157233
[28] Jiang, L., Hodges, J.S., Maze, J.R., Maurer, P., Taylor, J.M., Cory, D.G., Hemmer, P.R., Walsworth, R.L., Yacoby, A., Zibrov, A.S., Lukin, M.D.: Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267 (2009) · doi:10.1126/science.1176496
[29] Wolters, J., Schell, A.W., Kewes, G., Nusse, N., Schoengen, M., Doscher, H., Hannappel, T., Lochel, B., Barth, M., Benson, O.: Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010) · doi:10.1063/1.3499300
[30] Young, A., Hu, C.Y., Marseglia, L., Harrison, J.P., OBrien, J.L., Rarity, J.G.: Cavity enhanced spin measurement of the ground state spin of an NV center in diamond. New J. Phys. 11, 013007 (2009) · doi:10.1088/1367-2630/11/1/013007
[31] Buckley, B.B., Fuchs, G.D., Bassett, L.C., Awschalom, D.D.: Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212 (2010) · doi:10.1126/science.1196436
[32] Yang, W.L., Xu, Z.Y., Feng, M., Du, J.F.: Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J. Phys. 12, 113039 (2010) · doi:10.1088/1367-2630/12/11/113039
[33] Li, P.B., Gao, S.Y., Li, F.L.: Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator. Phys. Rev. A 83, 054306 (2011) · doi:10.1103/PhysRevA.83.054306
[34] Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85, 042306 (2012) · doi:10.1103/PhysRevA.85.042306
[35] Wang, C., Zhang, Y., Jiao, R.Z., Jin, G.S.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252 (2013) · doi:10.1364/OE.21.019252
[36] Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013) · doi:10.1088/1612-2011/10/11/115201
[37] Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sorensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730-734 (2010) · doi:10.1038/nature09256
[38] Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.I., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008) · doi:10.1126/science.1152261
[39] An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009) · doi:10.1103/PhysRevA.79.032303
[40] Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009) · doi:10.1103/PhysRevA.79.064304
[41] Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011) · doi:10.1103/PhysRevA.83.054305
[42] Cheng, L.Y., Wang, H.F., Zhang, S., Yeon, K.H.: Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator. Opt. Express 21, 5988 (2013) · doi:10.1364/OE.21.005988
[43] Tong, X., Wang, C., Cao, C., He, L.Y., Zhang, R.: A hybrid-system approach for W state and cluster state generation. Opt. Commun. 310, 166 (2014) · doi:10.1016/j.optcom.2013.07.083
[44] Wang, C., Cao, C., Tong, X., Mi, S.C., Shen, W.W., Wang, T.J.: Implementation of quantum repeaters based on nitrogen-vacancy centers via coupling to microtoroid resonators. Laser Phys. 24, 105204 (2014) · doi:10.1088/1054-660X/24/10/105204
[45] Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013) · doi:10.1103/PhysRevA.88.042323
[46] Cheng, L.Y., Wang, H.F., Zhang, S.: Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond. J. Opt. Soc. Am. B 30, 1821 (2013) · doi:10.1364/JOSAB.30.001821
[47] He, L.Y., Cao, C., Tong, X., Wang, C.: Quantum controlled-not gate operation and complete bell-state analysis using hybrid quantum circuits. Int. J. Theor. Phys. 53, 235 (2014) · Zbl 1284.81077 · doi:10.1007/s10773-013-1802-1
[48] Liu, A.P., Cheng, L.Y., Chen, L., Su, S.L., Wang, H.F., Zhang, S.: Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Opt. Comm. 313, 180 (2014) · doi:10.1016/j.optcom.2013.10.032
[49] Wang, C., Wang, T.J., Zhang, Y., Jiao, R.Z., Jin, G.S.: Concentration of entangled nitrogen-vacancy centers in decoherence free subspace. Opt. Express 22, 1551 (2014) · doi:10.1364/OE.22.001551
[50] Wang, C., Zhang, Y., Jin, G.S., Zhang, R.: Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators. J. Opt. Soc. Am. B 29, 3349 (2012) · doi:10.1364/JOSAB.29.003349
[51] Wang, C., Zhang, Y., Lei, M., Jin, G.S., Ma, H.Q., Zhang, R.: Nonlocal entanglement concentration of separate nitrogen-vacancy centers coupling to microtoroidal resonators. Quantum Inf. Comput. 14, 0107 (2014)
[52] He, L.Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Comm. 298, 260 (2013) · doi:10.1016/j.optcom.2013.02.031
[53] Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004) · doi:10.1103/PhysRevLett.92.127902
[54] Manson, N.B., Harrison, J.P., Sellars, M.J.: Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)
[55] Park, Y.S., Cook, A.K., Wang, H.: Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075 (2006) · doi:10.1021/nl061342r
[56] Larsson, M., Dinyari, K.N., Wang, H.: Composite optical microcavity of diamond nanopillar and silica microsphere. Nano Lett. 9, 1447 (2009) · doi:10.1021/nl8032944
[57] Barclay, P.E., Fu, F.M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. App. Phys. Lett. 95, 191115 (2009) · doi:10.1063/1.3262948
[58] McCutcheon, M.W., Loncar, M.: Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. Opt. Express 16, 19136 (2008) · doi:10.1364/OE.16.019136
[59] Englund, D., Shields, B., Rivoire, K., Hatami, F., Vuckovic, J., Park, H., Lukin, M.D.: Deterministic coupling of a single nitrogen acancy center to a photonic crystal cavity. Nano Lett. 10, 3922 (2010) · doi:10.1021/nl101662v
[60] Hanson, R., Gywat, O., Awschalom, D.D.: Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203(R) (2006) · doi:10.1103/PhysRevB.74.161203
[61] Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., Wrachtrup, J.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249-253 (2010) · doi:10.1038/nphys1536
[62] Shi, F., Rong, X., Xu, N., Wang, Y., Wu, J., Chong, B., Peng, X., Kniepert, J., Schoenfeld, R.S., Harneit, W., Feng, M., Du, J.F.: Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett. 105, 040504 (2010)
[63] De Lange, G., Wang, Z.H., Riste, D., Dobrovitski, V.V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60 (2010) · doi:10.1126/science.1192739
[64] Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009) · doi:10.1103/PhysRevLett.102.083601
[65] Hijlkema, M., Weber, B., Specht, H.P., Webster, S.C., Kuhn, A., Rempe, G.: A single-photon server with just one atom. Nat. Phys. 3, 253 (2007) · doi:10.1038/nphys569
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.