×

Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs. (English) Zbl 1504.94245


MSC:

94C05 Analytic circuit theory
93D40 Finite-time stability
34H05 Control problems involving ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic nonperiodic flow, J Atmos Sci, 20, 130-141 (1963) · Zbl 1417.37129
[2] Gleick, J.; Glazier, J.; Gunaratne, G., Chaos: making a new science, Phys Today, 41, 79 (1988)
[3] Tian, H.; Wang, Z.; Zhang, P., Dynamic analysis and robust control of a chaotic system with hidden attractor, Complexity, 2021 (2021)
[4] Grigorenko, Ilia; Grigorenko, Elena, Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, 91, Article 034101 pp. (2003)
[5] Syta, A.; Litak, G.; Lenci, S., Chaotic vibrations of the duffing system with fractional damping, Chaos, 24, Article 013107 pp. (2014) · Zbl 1374.34121
[6] Lü, J.; Chen, G.; Cheng, D., Bridge the gap between the Lorenz system and the Chen system, Int J Bifurcation Chaos, 12, 2917-2926 (2002) · Zbl 1043.37026
[7] Rössler, O. E., An equation for continuous chaos, Phys Lett A, 57, 397-398 (1976) · Zbl 1371.37062
[8] Koubaâ, K.; Feki, M., Quasi-periodicity, chaos and coexistence in the time delay controlled two-cell DC-DC buck converter, Int J Bifurcation Chaos, 24, 1450124 (2014) · Zbl 1302.39031
[9] Wang, Y.; Wang, Z.; Kong, D., Multifarious chaotic attractors and its control in rigid body attitude dynamical system, Math Probl Eng, 2020 (2020) · Zbl 1459.70015
[10] Oliveira, J.; Oliveira, P. M.; Boaventura-Cunha, J., Chaos-based grey wolf optimizer for higher order sliding mode position control of a robotic manipulator, Nonlinear Dyn, 90, 1353-1362 (2017)
[11] Malica, T.; Bouchez, G.; Wolfersberger, D., Spatiotemporal complexity of chaos in a phase-conjugate feedback laser system, Opt Lett, 45, 819-822 (2020)
[12] Itoh, M.; Chua, L. O., Memristor oscillators, Int J Bifurcation Chaos, 18, 3183-3206 (2008) · Zbl 1165.94300
[13] Liu, S.; Jiang, N.; Zhao, A., Secure optical communication based on cluster chaos synchronization in semiconductor lasers network, IEEE Access, 8, 11872-11879 (2020)
[14] Strukov, D. B.; Snider, G. S.; Stewart, D. R., The missing memristor found, Nature, 453, 80-83 (2008)
[15] Wang, S.; Wang, X.; Zhou, Y., A memristor-based complex Lorenz system and its modified projective synchronization, Entropy, 17, 7628-7644 (2015)
[16] Rakkiyappan, R.; Sivasamy, R.; Li, X., Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique, Circuits Systems Signal Process, 34, 763-778 (2015)
[17] Wen, S.; Zeng, Z.; Huang, T., Fuzzy modeling and synchronization of different memristor-based chaotic circuits, Phys Lett A, 377, 2016-2021 (2013) · Zbl 1297.94132
[18] Corinto, F.; Forti, M., Memristor circuits: Flux—Charge analysis method, IEEE Trans Circuits Syst Regul Pap, 63, 1997-2009 (2016)
[19] Guseinov, Davud V.; Mikhaylov, Alexey N.; Pershin, Yuriy V., The rich dynamics of memristive devices with non-separable nonlinear response, IEEE Trans Circuits Syst Express Briefs (2021)
[20] Guseinov, D. V., Capacitive effects can make memristors chaotic, Chaos Solitons Fractals, 144, Article 110699 pp. (2021) · Zbl 07514555
[21] Ignatov, Marina, Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion, Sci Adv, 3 (2017)
[22] Gerasimova, S. A., Simulation of synaptic coupling of neuron-like generators via a memristive device, Tech Phys, 62, 1259-1265 (2017)
[23] Gerasimova, Svetlana A., Stochastic memristive Interface for neural signal processing, Sensors, 21, 5587 (2021)
[24] Spagnolo, Bernardo, Noise-induced effects in population dynamics, J Phys Condens Matter, 14, 2247 (2002)
[25] Valenti, D., Picophytoplankton dynamics in noisy marine envi-ronment, Acta Phys Pol B, 43, 1227-1240 (2012)
[26] Denaro, G., Stochastic dynamics of two picophytoplankton populations in a real marine ecosystem, Acta Phys Pol B, 44, 977-1005 (2013) · Zbl 1371.92134
[27] Carollo, Angelo; Spagnolo, Bernardo; Valenti, Davide, Uhlmann curvature in dissipative phase transitions, Sci Rep, 8, 9852 (2018)
[28] Dubkov, A. A.; La Cognata, A.; Spagnolo, B., The problem of analytical calcula-tion of barrier crossing characteristics for Lévy flights, J Stat Mech Theory Exp, 2009, Article P01002 pp. (2009)
[29] Stassi, Roberto, Output field-quadrature measurements and squeezing in ultrastrong cavity-QED, New J Phys, 18, Article 123005 pp. (2016)
[30] Lisowski, Bartosz, Stepping molecular motor amid Lévy white noise, 91, Article 042713 pp. (2015)
[31] Denaro, Giovanni, Dynamics of two picophytoplankton groups in mediter-ranean sea: analysis of the deep chlorophyll maximum by a stochastic advec-tion-reaction-diffusion model, PLoS One, 8, Article e66765 pp. (2013)
[32] Guarcello, Claudio; Valenti, Davide; Spagnolo, Bernardo, Phase dynamics in graphene-based josephson junctions in the presence of thermal and correlated fluctuations, Phys Rev B, 92, Article 174519 pp. (2015)
[33] Caruso, A., Cyclic fluctuations, climatic changes and role of noise in plank-tonic foraminifera in the Mediterranean Sea, Fluctuation Noise Lett, 5, L349-L355 (2005)
[34] Guarcello, Claudio, Anomalous transport effects on switching currents of graphene-based josephson junctions, Nanotechnology, 28, Article 134001 pp. (2017)
[35] Guarcello, Claudio, Stabilization effects of dichotomous noise on the life-time of the superconducting state in a long josephson junction, Entropy, 17, 2862-2875 (2015)
[36] Carollo, Angelo; Valenti, Davide; Spagnolo, Bernardo, Geometry of quantum phase transitions, Phys Rep, 838, 1-72 (2020) · Zbl 1442.81031
[37] Carollo, Angelo, On quantumness in multi-parameter quantum estimation, J Stat Mech: Theory Exp, 2019, Article 094010 pp. (2019) · Zbl 1457.82021
[38] Ushakov, Yuriy V.; Dubkov, Alexander A.; Spagnolo, Bernardo, Spike train sta-tistics for consonant and dissonant musical accords in a simple auditory sensory model, Phys Rev E, 81, Article 041911 pp. (2010)
[39] Mikhaylov, A. N., Stochastic resonance in a metal-oxide memristive device, Chaos Solitons Fractals, 144, Article 110723 pp. (2021) · Zbl 07514575
[40] Surazhevsky, I. A., Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network, Chaos Solitons Fractals, 146 (2021) · Zbl 07526782
[41] Mikhaylov, Alexey, Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics, Front Neurosci, 14, 358 (2020)
[42] Yakimov, Arkady V., Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy, Appl Phys Lett, 114, Article 253506 pp. (2019)
[43] Agudov, N. V., Nonstationary distributions and relaxation times in a sto-chastic model of memristor, J Stat Mech Theory Exp, 2020, 2, Article 024003 pp. (2020)
[44] Filatov, D. O., Noise-induced resistive switching in a memristor based on ZrO2 (Y)/Ta2O5 stack, J Stat Mech Theory Exp, 2019, 12, Article 124026 pp. (2019)
[45] Pérez, Eduardo, Analysis of the statistics of device-to-device and cy-cle-to-cycle variability in TiN/Ti/Al: HfO2/TiN RRAMs, Microelectron Eng, 214, 104-109 (2019)
[46] Pankratov, E. L.; Spagnolo, B., Optimization of impurity profile for p-n-junction in heterostructures, Eur Phys J B, 46, 15-19 (2005)
[47] Mohanty, N. P.; Dey, R.; Roy, B. K., Switching synchronisation of a 3-D multi-state-time-delay chaotic system including externally added memristor with hidden attractors and multi-scroll via sliding mode control, Eur Phys J Spec Top, 229, 1231-1244 (2020)
[48] Li, J. F.; Jahanshahi, H.; Kacar, S., On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos Solitons Fractals, 145, Article 110681 pp. (2021) · Zbl 1498.94070
[49] Ali, M. S.; Hymavathi, M.; Senan, S., Global asymptotic synchronization of impulsive fractional-order complex-valued memristor-based neural networks with time varying delays, Commun Nonlinear Sci Numer Simul, 78, Article 104869 pp. (2019) · Zbl 1479.34123
[50] Xu, W.; Zhu, S.; Fang, X., Adaptive synchronization of memristor-based complex-valued neural networks with time delays, Neurocomputing, 364, 119-128 (2019)
[51] Li, S.; Tian, Y. P., Finite time synchronization of chaotic systems, Chaos Solitons Fractals, 15, 303-310 (2003) · Zbl 1038.37504
[52] Aghababa, M. P.; Khanmohammadi, S.; Alizadeh, G., Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, App Math Model, 35, 3080-3091 (2010) · Zbl 1219.93023
[53] Yang, X.; Lu, J., Finite-time synchronization of coupled networks with Markovian topology and impulsive effects, IEEE Trans Autom Control, 61, 2256-2261 (2015) · Zbl 1359.93459
[54] Liu, Y., Circuit implementation and finite-time synchronization of the 4D rabinovich hyperchaotic system, Nonlinear Dyn, 67, 89-96 (2012) · Zbl 1242.93056
[55] Zhang, D.; Mei, J.; Miao, P., Global finite-time synchronization of different dimensional chaotic systems, Appl Math Model, 48, 303-315 (2017) · Zbl 1480.34072
[56] Wang, L.; Dong, T.; Ge, M. F., Finite-time synchronization of memristor chaotic systems and its application in image encryption, Appl Math Comput, 347, 293-305 (2019) · Zbl 1428.34074
[57] Xiong, W.; Huang, J., Finite-time control and synchronization for memristor-based chaotic system via impulsive adaptive strategy, Adv Difference Equ, 2016, 1-9 (2016) · Zbl 1343.93077
[58] Abdurahman, A.; Jiang, H.; Teng, Z., Finite-time synchronization for memristor-based neural networks with time-varying delays, Neural Netw, 69, 20-28 (2015) · Zbl 1398.34107
[59] Velmurugan, G.; Rakkiyappan, R.; Cao, J., Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Netw, 73, 36-46 (2016) · Zbl 1398.34110
[60] Zheng, M.; Li, L.; Peng, H., Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network, Eur Phys J B, 89, 1-11 (2016)
[61] Chen, C.; Li, L.; Peng, H., Fixed-time synchronization of memristor-based BAM neural networks with time-varying discrete delay, Neural Netw, 96, 47-54 (2017) · Zbl 1441.93263
[62] Cao, J.; Li, R., Fixed-time synchronization of delayed memristor-based recurrent neural networks, Sci China Inf Sci, 60, Article 032201 pp. (2017)
[63] Zhang, Y.; Zhuang, J.; Xia, Y., Fixed-time synchronization of the impulsive memristor-based neural networks, Commun Nonlinear Sci Numer Simul, 77, 40-53 (2019) · Zbl 1524.34125
[64] Sánchez-Torres, J. D.; Sanchez, E. N.; Loukianov, A. G., A discontinuous recurrent neural network with predefined time convergence for solution of linear programming, (Proceedings of the 2014 IEEE symposium on swarm intelligence (2014)), 1-5
[65] Jiménez-Rodríguez, E.; Sánchez-Torres, J. D.; Loukianov, A. G., On optimal predefined-time stabilization, Int J Robust Nonlinear Control, 27, 3620-3642 (2017) · Zbl 1386.93254
[66] Muñoz-Vázquez, A. J.; Sánchez-Torres, J. D.; Anguiano-Gijón, C. A., Single-channel predefined-time synchronisation of chaotic systems, Asian J Control, 23, 190-198 (2021)
[67] Kocamaz, U. E.; Cevher, B.; Uyaroğlu, Y., Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos Solitons Fractals, 105, 92-98 (2017) · Zbl 1380.93187
[68] Luo, J.; Qu, S.; Chen, Y., Synchronization of memristor-based chaotic systems by a simplified control and its application to image en-/decryption using DNA encoding, Chin J Phys, 62, 374-387 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.