Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb A^1\)-homotopy theory. III: Finite fields and complements. (English) Zbl 07262981 Algebr. Geom. 7, No. 5, 634-644 (2020). MSC: 14F42 14L10 55R15 20G15 PDF BibTeX XML Cite \textit{A. Asok} et al., Algebr. Geom. 7, No. 5, 634--644 (2020; Zbl 07262981) Full Text: DOI
Wendt, Matthias Oriented Schubert calculus in Chow-Witt rings of Grassmannians. (English) Zbl 07217790 Binda, Federico (ed.) et al., Motivic homotopy theory and refined enumerative geometry. Workshop, Universität Duisburg-Essen, Essen, Germany, May 14–18, 2018. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4898-1/pbk; 978-1-4704-5455-5/ebook). Contemporary Mathematics 745, 217-267 (2020). MSC: 14C17 14F42 14M15 14N15 PDF BibTeX XML Cite \textit{M. Wendt}, Contemp. Math. 745, 217--267 (2020; Zbl 07217790) Full Text: DOI
Hornbostel, Jens; Wendt, Matthias Chow-Witt rings of classifying spaces for symplectic and special linear groups. (English) Zbl 1444.14018 J. Topol. 12, No. 3, 916-966 (2019). MSC: 14C17 19G12 19D45 55R40 PDF BibTeX XML Cite \textit{J. Hornbostel} and \textit{M. Wendt}, J. Topol. 12, No. 3, 916--966 (2019; Zbl 1444.14018) Full Text: DOI
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Generically split octonion algebras and \(\mathbb{A}^1\)-homotopy theory. (English) Zbl 1430.14051 Algebra Number Theory 13, No. 3, 695-747 (2019). Reviewer: Pavel Sechin (Heidelberg) MSC: 14F42 14L30 20G41 57T20 PDF BibTeX XML Cite \textit{A. Asok} et al., Algebra Number Theory 13, No. 3, 695--747 (2019; Zbl 1430.14051) Full Text: DOI
Wendt, Matthias On stably trivial spin torsors over low-dimensional schemes. (English) Zbl 1420.14046 Q. J. Math. 69, No. 4, 1221-1251 (2018). MSC: 14F42 14L15 PDF BibTeX XML Cite \textit{M. Wendt}, Q. J. Math. 69, No. 4, 1221--1251 (2018; Zbl 1420.14046) Full Text: DOI arXiv
Wendt, Matthias Homology of \(\operatorname{SL}_2\) over function fields. I: Parabolic subcomplexes. (English) Zbl 1400.20044 J. Reine Angew. Math. 739, 159-205 (2018). Reviewer: Kevin Hutchinson (Dublin) MSC: 20G10 20G15 20E08 14L30 55N91 57T10 PDF BibTeX XML Cite \textit{M. Wendt}, J. Reine Angew. Math. 739, 159--205 (2018; Zbl 1400.20044) Full Text: DOI
Soergel, Wolfgang; Wendt, Matthias Perverse motives and graded derived category \({\mathcal{O}}\). (English) Zbl 1436.14015 J. Inst. Math. Jussieu 17, No. 2, 347-395 (2018). MSC: 14C15 14F42 14M15 16S37 17B10 18E10 18G80 22E47 PDF BibTeX XML Cite \textit{W. Soergel} and \textit{M. Wendt}, J. Inst. Math. Jussieu 17, No. 2, 347--395 (2018; Zbl 1436.14015) Full Text: DOI arXiv
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb A^1\)-homotopy theory. II: Principal bundles and homogeneous spaces. (English) Zbl 1400.14061 Geom. Topol. 22, No. 2, 1181-1225 (2018). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 55R15 14L10 20G15 PDF BibTeX XML Cite \textit{A. Asok} et al., Geom. Topol. 22, No. 2, 1181--1225 (2018; Zbl 1400.14061) Full Text: DOI
Asok, Aravind; Hoyois, Marc; Wendt, Matthias Affine representability results in \(\mathbb{A}^1\)-homotopy theory. I: Vector bundles. (English) Zbl 1401.14118 Duke Math. J. 166, No. 10, 1923-1953 (2017). Reviewer: Fangzhou Jin (Essen) MSC: 14F42 55R15 PDF BibTeX XML Cite \textit{A. Asok} et al., Duke Math. J. 166, No. 10, 1923--1953 (2017; Zbl 1401.14118) Full Text: DOI Euclid arXiv
Asok, Aravind; Kebekus, Stefan; Wendt, Matthias Comparing \(\mathbb{A}^1\)-\(h\)-cobordism and \(\mathbb{A}^1\)-weak equivalence. (English) Zbl 1401.14058 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 17, No. 2, 531-572 (2017). MSC: 14D20 14F42 57R22 PDF BibTeX XML Cite \textit{A. Asok} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 17, No. 2, 531--572 (2017; Zbl 1401.14058) Full Text: DOI
Voelkel, Konrad; Wendt, Matthias On \(\mathbb{A}^1\)-fundamental groups of isotropic reductive groups. (Sur le groupe fondamental au sens de la A1-homotopie des groupes réductifs isotropes.) (English. French summary) Zbl 1387.14065 C. R., Math., Acad. Sci. Paris 354, No. 5, 453-458 (2016). MSC: 14F42 19E15 20G15 PDF BibTeX XML Cite \textit{K. Voelkel} and \textit{M. Wendt}, C. R., Math., Acad. Sci. Paris 354, No. 5, 453--458 (2016; Zbl 1387.14065) Full Text: DOI
Hutchinson, Kevin; Wendt, Matthias On the third homology of \(\mathrm{SL}_2\) and weak homotopy invariance. (English) Zbl 1330.20069 Trans. Am. Math. Soc. 367, No. 10, 7481-7513 (2015). MSC: 20G10 14F42 19D55 19D25 19C09 55N35 PDF BibTeX XML Cite \textit{K. Hutchinson} and \textit{M. Wendt}, Trans. Am. Math. Soc. 367, No. 10, 7481--7513 (2015; Zbl 1330.20069) Full Text: DOI arXiv
Wendt, Matthias Fibre sequences and localization of simplicial sheaves. (English) Zbl 1276.55020 Algebr. Geom. Topol. 13, No. 3, 1779-1813 (2013). Reviewer: Jérôme Scherer (Lausanne) MSC: 55R65 55P60 18F20 14F42 PDF BibTeX XML Cite \textit{M. Wendt}, Algebr. Geom. Topol. 13, No. 3, 1779--1813 (2013; Zbl 1276.55020) Full Text: DOI arXiv
Wendt, Matthias Rationally trivial torsors in \(\mathbb A^1\)-homotopy theory. (English) Zbl 1228.19002 J. \(K\)-Theory 7, No. 3, 541-572 (2011). Reviewer: Tong Wenting (Nanjing) MSC: 19D25 14F42 PDF BibTeX XML Cite \textit{M. Wendt}, J. \(K\)-Theory 7, No. 3, 541--572 (2011; Zbl 1228.19002) Full Text: DOI
Wendt, Matthias \(\mathbb A^1\)-homotopy of Chevalley groups. (English) Zbl 1200.14039 J. \(K\)-Theory 5, No. 2, 245-287 (2010). Reviewer: Tong Wenting (Nanjing) MSC: 14F35 14F42 19D25 PDF BibTeX XML Cite \textit{M. Wendt}, J. \(K\)-Theory 5, No. 2, 245--287 (2010; Zbl 1200.14039) Full Text: DOI
Wendt, Matthias On the \(\mathbb A^1\)-fundamental groups of smooth toric varieties. (English) Zbl 1276.14035 Adv. Math. 223, No. 1, 352-378 (2010). MSC: 14F42 14F35 14M25 PDF BibTeX XML Cite \textit{M. Wendt}, Adv. Math. 223, No. 1, 352--378 (2010; Zbl 1276.14035) Full Text: DOI
Wendt, Matthias On fibre sequences in motivic homotopy theory. (English) Zbl 1149.14001 Leipzig: Univ. Leipzig, Fakultät für Mathematik und Informatik (Dissertation). x, 165 p. (2007). MSC: 14-02 14F35 55-02 14F42 14C35 PDF BibTeX XML Cite \textit{M. Wendt}, On fibre sequences in motivic homotopy theory. Leipzig: Univ. Leipzig, Fakultät für Mathematik und Informatik (Dissertation) (2007; Zbl 1149.14001)