zbMATH — the first resource for mathematics

Fibre sequences and localization of simplicial sheaves. (English) Zbl 1276.55020
A localization functor \(L_f\) in a model category corresponds to a new model structure where the weak equivalences are the \(f\)-local equivalences. Nullification functors \(P_A\) are those localizations for which the map \(f\) one inverts is of the form \(A \rightarrow \star\) and they determine a right proper model structure. A. J. Berrick and E. D. Farjoun studied the question of preservation of fiber sequences of spaces under localization, [Isr. J. Math. 135, 205-220 (2003; Zbl 1071.55008)]. They proved that a fiber sequence \(F \rightarrow E \rightarrow B\) is preserved by \(P_A\) if and only if the homotopy pull-back along the fiber of the nullification \(B \rightarrow P_A B\) is trivial. A major ingredient here is fiberwise localization.
In the article under review the author provides a generalization of this criterion in the category of simplicial sheaves over a site, with applications to \(\mathbb A^1\)-homotopy theory when the site is that of smooth finite type schemes over a field. In this setting quasi-fibrations are replaced by Rezk’s sharp maps, or equivalently Jardine’s universally \(f\)-local maps, i.e., maps in the \(f\)-local model structure which behave well under pull-backs. A nice achievement is a construction of fiberwise localization for simplicial sheaves based on a homotopy colimit decomposition of the base by simplices \(\Delta^n \times U\), with \(U\) in the site. This is analogous to a topological construction, but different since \(U\) is not contractible in general. Once this is done, the main result provides a characterization for universally \(f\)-local maps in the spirit of Berrick and Dror Farjoun. It holds for right proper model structures, in particular for nullifications, but possibly other localization functors.
Background and comparison of different viewpoints are given, which makes it a valuable reference on the subject.

55R65 Generalizations of fiber spaces and bundles in algebraic topology
55P60 Localization and completion in homotopy theory
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
14F42 Motivic cohomology; motivic homotopy theory
Full Text: DOI arXiv
[1] A J Berrick, E D Farjoun, Fibrations and nullifications, Israel J. Math. 135 (2003) 205 · Zbl 1071.55008 · doi:10.1007/BF02776058
[2] D Chataur, J Scherer, Fiberwise localization and the cube theorem, Comment. Math. Helv. 81 (2006) 171 · Zbl 1105.55011 · doi:10.4171/CMH/48
[3] A Dold, R Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958) 239 · Zbl 0091.37102 · doi:10.2307/1970005
[4] D Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001) 177 · Zbl 1001.18001 · doi:10.1006/aima.2001.2015
[5] E D Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics 1622, Springer (1996) · Zbl 0842.55001 · doi:10.1007/BFb0094429
[6] P G Goerss, J F Jardine, Localization theories for simplicial presheaves, Canad. J. Math. 50 (1998) 1048 · Zbl 0914.55004 · doi:10.4153/CJM-1998-051-1
[7] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser (1999) · Zbl 0949.55001 · doi:10.1007/978-3-0348-8707-6
[8] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society (2003) · Zbl 1017.55001
[9] J Hornbostel, Localizations in motivic homotopy theory, Math. Proc. Cambridge Philos. Soc. 140 (2006) 95 · Zbl 1094.55014 · doi:10.1017/S030500410500890X
[10] M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999) · Zbl 0909.55001
[11] J F Jardine, Boolean localization, in practice, Doc. Math. 1 (1996) 245 · Zbl 0858.55018 · emis:journals/DMJDMV/vol-01/13.html · eudml:232896 · www.math.uiuc.edu
[12] J F Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445 · Zbl 0969.19004 · emis:journals/DMJDMV/vol-05/15.html · eudml:121235 · www.math.uiuc.edu
[13] F Morel, \(\mathbb A^1\)-algebraic topology over a field, Lecture Notes in Mathematics 2052, Springer (2012) · Zbl 1263.14003 · doi:10.1007/978-3-642-29514-0
[14] F Morel, V Voevodsky, \(\mathbfA^1\)-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45 · Zbl 0983.14007 · doi:10.1007/BF02698831 · numdam:PMIHES_1999__90__45_0 · eudml:104163
[15] C Rezk, Fibrations and homotopy colimits of simplicial sheaves · arxiv:math/9811038
[16] Y B Rudyak, On Thom spectra, orientability, and cobordism, Springer Monographs in Mathematics, Springer (1998) · Zbl 0906.55001 · doi:10.1007/978-3-540-77751-9
[17] M Wendt, On fibre sequences in motivic homotopy theory, PhD thesis, Universität Leipzig (2007) · Zbl 1149.14001
[18] M Wendt, Classifying spaces and fibrations of simplicial sheaves, J. Homotopy Relat. Struct. 6 (2011) 1 · Zbl 1278.18025 · tcms.org.ge
[19] M Wendt, Rationally trivial torsors in \(\mathbb A^1\)-homotopy theory, J. K-Theory 7 (2011) 541 · Zbl 1228.19002 · doi:10.1017/is011004020jkt157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.