×

Hecke’s theory and the Selberg class. (English) Zbl 1196.11069

Summary: The authors prove that the Hecke \(L\)-functions associated with the cusp forms of the Hecke groups \(\mathfrak G(\lambda)\) belong to the extended Selberg class, and for \(\lambda \leq 2\) they characterize the Hecke \(L\)-functions belonging to the Selberg class.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11M41 Other Dirichlet series and zeta functions
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] A.O.L. Atkin, J. Lehner, Hecke operators on \(\Gamma_0(m)\), Math. Ann. 185 (1970), 134–160. · Zbl 0177.34901 · doi:10.1007/BF01359701
[2] G. Bachman, Introduction to \(p\)-Adic Numbers and Valuation Theory, Academic Press 1964. · Zbl 0192.40103
[3] B.C. Berndt, Hecke’s Theory of Modular Forms and Dirichlet Series, Lecture Notes, Dept. of Math., Univ. of Illinois 1970.
[4] J.B. Conrey, A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673–693. · Zbl 0796.11037 · doi:10.1215/S0012-7094-93-07225-0
[5] E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664–699. · Zbl 0014.01601 · doi:10.1007/BF01565437
[6] E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Vandenhoeck & Ruprecht 1983. · Zbl 0507.10015
[7] H. Iwaniec, Topics in Classical Auromorphic Forms, A. M. S. Publications 1997. · Zbl 0905.11023
[8] J. Kaczorowski, G. Molteni, A. Perelli, Linear independence in the Selberg class, C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 28–32. · Zbl 0929.11029
[9] J. Kaczorowski, A. Perelli, On the structure of the Selberg class, I: \(0\leq d\leq 1\), Acta Math. 182 (1999), 207–241. · Zbl 1126.11335 · doi:10.1007/BF02392574
[10] J. Kaczorowski, A. Perelli, The Selberg class: a survey, in ‘Number Theory in Progress’, Proc. Intern. Conf. in honor of A. Schinzel, Zakopane 1997, vol. 2, de Gruyter 1999, 953–992. · Zbl 0929.11028
[11] J. Kaczorowski, A. Perelli, On the structure of the Selberg class, V: \(1<d<5/3\), Invent. Math. 150 (2002), 485–516. · Zbl 1034.11051 · doi:10.1007/s00222-002-0236-9
[12] J. Kaczorowski, A. Perelli, Factorization in the extended Selberg class, Funct. Approx. 31 (2003), 109–117. · Zbl 1065.11072
[13] A. Leutbecher, Über die Heckeschen Gruppen \(G(\lambda)\). II, Math. Ann. 211 (1974), 63–86. · Zbl 0292.10020 · doi:10.1007/BF01344143
[14] T. Miyake, Modular Forms, Springer Verlag 1976. · Zbl 0466.10012
[15] M.R. Murty, Selberg’s conjectures and Artin \(L\)-functions, II, in ‘Current Trends in Mathematics and Physics’, ed. by S.D. Adhikari, Narosa, New Delhi 1995, 154–168. · Zbl 0886.11064
[16] M.R. Murty, V.K. Murty, Strong multiplicity one for Selberg’s class, C.R. Acad. Sci. Paris Sér. I Math. 319 (1994), 315–320. · Zbl 0823.11049
[17] A.P. Ogg, Modular Forms and Dirichlet Series, Benjamin, New York-Amsterdam 1969. · Zbl 0191.38101
[18] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in:‘Proc. Amalfi Conf. Analytic Number Theory’, Maiori 1989, ed. by E. Bombieri et al., Università di Salerno 1992, 367–385. · Zbl 0787.11037
[19] J. Wolfart, Transzendente Zahlen als Fourierkoeffizienten von Heckes Modulformen, Acta Arith. 39 (1981), 193–205. · Zbl 0379.10015
[20] J. Wolfart, Graduierte Algebren automorpher Formen zu Dreiecksgruppen, Analysis 1 (1981), 177–190. · Zbl 0482.30035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.