×

Improvements on: “Multi-party quantum key agreement protocol with Bell states and single particles”. (English) Zbl 1441.81079

Summary: Hao-Nan Liu et al. [ibid. 58, No. 5, 1659–1666 2019; Zbl 1422.81088)] proposed a multi-party quantum key agreement protocol with Bell states and single particles. They claimed that their protocol can resist the participant and outside attacks. However, we found that their protocol does not provide the fairness property and cannot resist collusion attacks. The last involved participant in Part P can conspire with anyone of the participants in Part Q to manipulate the final shared key without being detected. Moreover, two improved protocols depending on different strategies are proposed, in which the security and the fairness are both enhanced [H.-N. Liu et al., loc. cit].

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P70 Quantum coding (general)

Citations:

Zbl 1422.81088
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp 175-179 (1984) · Zbl 1306.81030
[2] Deng, F-G; Long, G-L, Controlled order rearrangement encryption for quantum key distribution, Phys. Rev. A, 68, 4, 042315 (2003) · doi:10.1103/PhysRevA.68.042315
[3] Deng, F-G; Long, G-L, Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys. Rev. A, 70, 1, 012311 (2004) · doi:10.1103/PhysRevA.70.012311
[4] Tan, YG; Cai, QY, Practical decoy state quantum key distribution with finite resource, The European Phys. J. D, 56, 3, 449-455 (2010) · doi:10.1140/epjd/e2009-00316-1
[5] Liu, B.; Gao, F.; Wen, Q-Y, Single-photon multiparty quantum cryptographic protocols with collective detection, IEEE J. Quantum Electron., 47, 11, 1383-1390 (2011) · doi:10.1109/JQE.2011.2167743
[6] Huang, W.; Guo, F-Z; Huang, Z.; Wen, Q-Y; Zhu, F-C, Three-particle qkd protocol against a collective noise, Optics Commun., 284, 1, 536-540 (2011) · doi:10.1016/j.optcom.2010.08.073
[7] Jin, W.; Zheng, LM; Wang, FQ; Liang, RS, The influence of stochastic dispersion on quantum key distribution system, Science China Inform. Sci., 56, 9, 1-6 (2013) · doi:10.1007/s11432-012-4586-7
[8] Sasaki, T.; Yamamoto, Y.; Koashi, M., Practical quantum key distribution protocol without monitoring signal disturbance, Nature, 509, 7501, 475 (2014) · doi:10.1038/nature13303
[9] Zhang, C-M; Song, X-T; Treeviriyanupab, P.; Li, M.; Wang, C.; Li, H-W; Yin, Z-Q; Chen, W.; Han, Z-F, Delayed error verification in quantum key distribution, Chinese Science Bulletin, 59, 23, 2825-2828 (2014) · doi:10.1007/s11434-014-0446-8
[10] Cleve, R.; Gottesman, D.; Lo, H-K, How to share a quantum secret, Phys. Rev. Lett., 83, 3, 648 (1999) · doi:10.1103/PhysRevLett.83.648
[11] Hillery, M.; Bužek, V.; Berthiaume, A., Quantum secret sharing, Phys. Rev. A, 59, 3, 1829 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[12] Du, R.; Sun, Z.; Wang, B.; Long, D., Quantum secret sharing of secure direct communication using one-time pad, Int. J. Theor. Phys., 51, 9, 2727-2736 (2012) · Zbl 1261.81054 · doi:10.1007/s10773-012-1147-1
[13] Deng, F-G; Long, GL; Liu, X-S, Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block, Phys. Rev. A, 68, 4, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[14] Deng, F-G; Long, GL, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 69, 5, 052319 (2004) · doi:10.1103/PhysRevA.69.052319
[15] Pirandola, S.; Braunstein, SL; Loyd, S.; Mancini, S., Confidential direct communications: a quantum approach using continuous variables, IEEE Journal of Selected Topics in Quantum Electronics, 15, 6, 1570-1580 (2009) · doi:10.1109/JSTQE.2009.2021147
[16] Sun, Z-W; Du, R-G; Long, D-Y, Quantum secure direct communication with two-photon four-qubit cluster states, Int. J. Theor. Phys., 51, 6, 1946-1952 (2012) · Zbl 1251.81034 · doi:10.1007/s10773-011-1072-8
[17] Yang, Y-G; Wen, Q-Y, An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement, J. Phys. A Math. Theor., 42, 5, 055305 (2009) · Zbl 1156.81364 · doi:10.1088/1751-8113/42/5/055305
[18] Huang, W.; Wen, QY; Liu, B.; Gao, F.; Sun, Y., Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels, Sci. China Phys. Mech. Astronomy, 56, 9, 1670-1678 (2013) · doi:10.1007/s11433-013-5224-0
[19] Sun, Z.; Jianping, Y.; Wang, P.; Lingling, X.; Wu, C., Quantum private comparison with a malicious third party, Quantum Inf. Process, 14, 6, 2125-2133 (2015) · Zbl 1317.81087 · doi:10.1007/s11128-015-0956-6
[20] Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp 643-652. ACM (2002) · Zbl 1192.94115
[21] Unruh, D.: Universally composable quantum multi-party computation. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp 486-505. Springer (2010) · Zbl 1280.94096
[22] Sun, Z.; Zhang, C.; Wang, B.; Li, Q.; Long, D., Improvements on multiparty quantum key agreement with single particles, Quantum Inform. Process., 12, 11, 3411-3420 (2013) · Zbl 1282.94068 · doi:10.1007/s11128-013-0608-7
[23] Huang, W.; Su, Q.; Xu, BJ; Liu, B.; Fan, F.; Jia, HY; Yang, YH, Improved multiparty quantum key agreement in travelling mode, Sci. China Phys. Mech. Astronomy, 59, 12, 120311 (2016) · doi:10.1007/s11433-016-0322-3
[24] Zhou, N.; Zeng, G.; Xiong, J., Quantum key agreement protocol, Electron. Lett., 40, 18, 1149-1150 (2004) · doi:10.1049/el:20045183
[25] Tsai, C.-W., Chong, S.-K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010). National Chiao Tung University, Hsinchu, Taiwan, pp 47-49 (2010)
[26] Chong, S-K; Hwang, T., Quantum key agreement protocol based on bb84, Optics Commun., 283, 6, 1192-1195 (2010) · doi:10.1016/j.optcom.2009.11.007
[27] Shi, R-H; Zhong, H., Multi-party quantum key agreement with bell states and bell measurements, Quantum Inform. Process., 12, 2, 921-932 (2013) · Zbl 1264.81151 · doi:10.1007/s11128-012-0443-2
[28] Liu, B.; Gao, F.; Huang, W.; Wen, Q-Y, Multiparty quantum key agreement with single particles, Quantum Inform. Process., 12, 4, 1797-1805 (2013) · Zbl 1281.94038 · doi:10.1007/s11128-012-0492-6
[29] Huang, W.; Wen, Q-Y; Liu, B.; Su, Q.; Gao, F., Cryptanalysis of a multi-party quantum key agreement protocol with single particles, Quantum Inform. Process., 13, 7, 1651-1657 (2014) · Zbl 1441.81076 · doi:10.1007/s11128-014-0758-2
[30] Liu, B.; Di, X.; Jia, H-Y; Liu, R-Z, Collusive attacks to circle-type multi-party quantum key agreement protocols, Quantum Inf. Process, 15, 5, 2113-2124 (2016) · Zbl 1338.81169 · doi:10.1007/s11128-016-1264-5
[31] Cai, B-B; Guo, G-D; Lin, S., Multi-party quantum key agreement without entanglement, Int. J. Theor. Phys., 56, 4, 1039-1051 (2017) · Zbl 1390.81128 · doi:10.1007/s10773-016-3246-x
[32] Liu, W-J; Xu, Y.; Yang, C-N; Gao, P-P; Yu, W-B, An efficient and secure arbitrary n-party quantum key agreement protocol using bell states, Int. J. Theor. Phys., 57, 1, 195-207 (2018) · Zbl 1382.81073 · doi:10.1007/s10773-017-3553-x
[33] Min, S-Q; Chen, H-Y; Gong, L-H, Novel multi-party quantum key agreement protocol with g-like states and bell states, Int. J. Theor. Phys., 57, 6, 1811-1822 (2018) · Zbl 1394.81107 · doi:10.1007/s10773-018-3706-6
[34] Wang, S-S; Xu, G-B; Liang, X-Q; Wu, Y-L, Multiparty quantum key agreement with four-qubit symmetric w state, Int. J. Theor. Phys., 57, 12, 3716-3726 (2018) · Zbl 1412.81066 · doi:10.1007/s10773-018-3884-2
[35] Liu, H-N; Liang, X-Q; Jiang, D-H; Xu, G-B; Zheng, W-M, Multi-party quantum key agreement with four-qubit cluster states, Quantum Inf. Process, 18, 8, 242 (2019) · Zbl 1508.81709 · doi:10.1007/s11128-019-2346-y
[36] He, W-T; Wang, J.; Zhang, T-T; Alzahrani, F.; Hobiny, A.; Alsaedi, A.; Hayat, T.; Deng, F-G, High-efficiency three-party quantum key agreement protocol with quantum dense coding and bell states, Int. J. Theor. Phys., 58, 9, 2834-2846 (2019) · Zbl 1433.81029 · doi:10.1007/s10773-019-04167-8
[37] Yin, X-R; Ma, W-P, Multiparty quantum key agreement based on three-photon entanglement with unidirectional qubit transmission, Int. J. Theor. Phys., 58, 2, 631-638 (2019) · Zbl 1412.81074 · doi:10.1007/s10773-018-3960-7
[38] Sun, Z.; Huang, J.; Wang, P., Efficient multiparty quantum key agreement protocol based on commutative encryption, Quantum Inf. Process, 15, 5, 2101-2111 (2016) · Zbl 1338.81175 · doi:10.1007/s11128-016-1253-8
[39] Wang, P.; Sun, Z.; Sun, X., Multi-party quantum key agreement protocol secure against collusion attacks, Quantum Inf. Process, 16, 7, 170 (2017) · Zbl 1373.81187 · doi:10.1007/s11128-017-1621-z
[40] Zhao, X-Q; Zhou, N-R; Chen, H-Y; Gong, L-H, Multiparty quantum key agreement protocol with entanglement swapping, Int. J. Theor. Phys., 58, 2, 436-450 (2019) · Zbl 1412.81079 · doi:10.1007/s10773-018-3944-7
[41] Liu, H-N; Liang, X-Q; Jiang, D-H; Zhang, Y-H; Xu, G-B, Multi party quantum key agreement protocol with bell states and single particles, Int. J. Theor. Phys., 58, 5, 1659-1666 (2019) · Zbl 1422.81088 · doi:10.1007/s10773-019-04063-1
[42] Liu, B.; Xiao, D.; Huang, W.; Jia, H-Y; Song, T-T, Quantum private comparison employing single-photon interference, Quantum Inf. Process, 16, 7, 180 (2017) · Zbl 1373.81175 · doi:10.1007/s11128-017-1630-y
[43] Chang, Y-J; Tsai, C-W; Hwang, T., Multi-user private comparison protocol using ghz class states, Quantum Inform. Process., 12, 2, 1077-1088 (2013) · Zbl 1264.81070 · doi:10.1007/s11128-012-0454-z
[44] Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: Quantum cryptography, or unforgeable subway tokens. In: Advances in Cryptology, pp 267-275. Springer (1983)
[45] Bennett, CH; Bessette, F.; Brassard, G.; Salvail, L.; Smolin, J., Experimental quantum cryptography, J. Cryptol., 5, 1, 3-28 (1992) · Zbl 1114.94005 · doi:10.1007/BF00191318
[46] Liu, D., Pei, C.-X., Quan, D.-X., Han, B.-B., Zhao, N.: A new attack strategy for bb84 protocol based on, breidbart basis. In: 2009 Fourth International Conference on Communications and Networking in China, pp 1-3. IEEE (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.