×

Principle of cluster minimum complementary energy of FEM-cluster-based reduced order method: fast updating the interaction matrix and predicting effective nonlinear properties of heterogeneous material. (English) Zbl 1467.74075

Summary: The present paper studies the efficient prediction of effective mechanical properties of heterogeneous material by the FCA (FEM-Cluster based reduced order model Analysis) method proposed by the second author et al. [Comput. Methods Appl. Mech. Eng. 348, 157–184 (2019; Zbl 1440.74383)]. The principle of minimum complementary energy and its cluster form for the RUC subjected to applied uniform eigenstrains and the PHBCs (Periodic Homogeneous Boundary Conditions) are developed. By using the known interaction matrix, an alternative form of the principle of cluster minimum complementary energy is constructed and proved very efficient for updating the interaction matrix and the effective elastic modulus when the material properties of clusters change. Moreover, the proposed principle of cluster minimum complementary energy is applied for the incremental nonlinear analysis of the cluster reduced order model, and thus greatly improves the prediction of nonlinear effective properties of the RUC in online stage computed in [the second author et al., loc. cit.]. A number of numerical examples illustrate the effectiveness and efficiency of the FCA approach with the proposed principle of cluster minimum complementary energy.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E05 Inhomogeneity in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Citations:

Zbl 1440.74383
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cheng GD, Li XK, Nie YH, Li HY (2019) FEM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput Methods Appl Mech Eng 348:157-184 · Zbl 1440.74383 · doi:10.1016/j.cma.2019.01.019
[2] Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65:349-354 · doi:10.1088/0370-1298/65/5/307
[3] Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solids 11:357-372 · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[4] Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89-101 · Zbl 0127.15302 · doi:10.1016/0022-5096(65)90023-2
[5] Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213-222 · doi:10.1016/0022-5096(65)90010-4
[6] Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech ASME 21:236-240 · Zbl 0059.17604
[7] Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitschrift für Phys 151:504-518 · doi:10.1007/BF01337948
[8] Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343-352 · Zbl 0119.40105 · doi:10.1016/0022-5096(62)90005-4
[9] Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6:147-157 · doi:10.1016/0167-6636(87)90005-6
[10] Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571-574 · doi:10.1016/0001-6160(73)90064-3
[11] Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27:315-330 · Zbl 0419.73007 · doi:10.1016/0022-5096(79)90032-2
[12] Dvorak GJ, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A 437:291-310 · Zbl 0748.73003 · doi:10.1098/rspa.1992.0062
[13] Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc Lond A 437:311-327 · Zbl 0748.73007 · doi:10.1098/rspa.1992.0063
[14] Roussette S, Michel J-C, Suquet P (2009) Nonuniform transformation field analysis of elastic – viscoplastic composites. Compos Sci Technol 69:22-27 · doi:10.1016/j.compscitech.2007.10.032
[15] Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937-6955 · Zbl 1057.74031 · doi:10.1016/S0020-7683(03)00346-9
[16] Kanit T, Forest S, Galliet I et al (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647-3679 · Zbl 1038.74605 · doi:10.1016/S0020-7683(03)00143-4
[17] Trovalusci P, De Bellis ML, Ostoja-Starzewski M (2016) A statistically-based homogenization approach for particle random composites as micropolar continua. In: Generalized continua as models for classical and advanced materials. Springer, pp 425-441
[18] Reccia E, De Bellis ML, Trovalusci P, Masiani R (2018) Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Compos Part B Eng 136:39-45 · doi:10.1016/j.compositesb.2017.10.017
[19] Kubair DV, Ghosh S (2018) Statistics informed boundary conditions for statistically equivalent representative volume elements of clustered composite microstructures. Mech Adv Mater Struct 25:1205-1213 · doi:10.1080/15376494.2017.1330980
[20] Hori M, Nemat-Nasser S (1999) On two micromechanics theories for determining micro – macro relations in heterogeneous solids. Mech Mater 31:667-682 · doi:10.1016/S0167-6636(99)00020-4
[21] Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 43:266-278 · Zbl 1119.74359 · doi:10.1016/j.ijsolstr.2005.03.055
[22] Bakhvalov NS, Panasenko GP (1989) Averaging processes in periodic media. Mathematical problems in mechanics of composite materials · Zbl 0692.73012
[23] Bensoussan A, Lions J-L, Papanicolaou G (2011) Asymptotic analysis for periodic structures. American Mathematical Soc · Zbl 1229.35001
[24] Oleınik OA, Shamaev AS, Yosifian GA (1992) Mathematical problems in the theory of strongly inhomogeneous elastic media, Moscow State University, Moscow 1990; English version, Mathematical problems in elasticity and homogenization
[25] Cai YW, Xu L, Cheng GD (2014) Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int J Solids Struct 51:284-292 · doi:10.1016/j.ijsolstr.2013.10.003
[26] Cheng GD, Cai YW, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sin 29:550-556 · Zbl 1346.74158 · doi:10.1007/s10409-013-0043-0
[27] Yi SN, Xu L, Cheng GD, Cai YW (2015) FEM formulation of homogenization method for effective properties of periodic heterogeneous beam and size effect of basic cell in thickness direction. Comput Struct 156:1-11 · doi:10.1016/j.compstruc.2015.04.010
[28] Zhao J, Li HY, Cheng GD, Cai YW (2016) On predicting the effective elastic properties of polymer nanocomposites by novel numerical implementation of asymptotic homogenization method. Compos Struct 135:297-305 · doi:10.1016/j.compstruct.2015.09.039
[29] Li Y, Abbès F, Hoang MP et al (2016) Analytical homogenization for in-plane shear, torsion and transverse shear of honeycomb core with skin and thickness effects. Compos Struct 140:453-462 · doi:10.1016/j.compstruct.2016.01.007
[30] Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192:3233-3244 · Zbl 1054.74727 · doi:10.1016/S0045-7825(03)00348-7
[31] Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309-330 · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[32] Terada K, Hirayama N, Yamamoto K et al (2014) Applicability of micro – macro decoupling scheme to two-scale analysis of fiber-reinforced plastics. Adv Compos Mater 23:421-450 · doi:10.1080/09243046.2014.915098
[33] Terada K, Kato J, Hirayama N et al (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52:1199-1219 · Zbl 1388.74026 · doi:10.1007/s00466-013-0872-5
[34] Liu Z, Bessa MA, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319-341 · Zbl 1436.74070 · doi:10.1016/j.cma.2016.04.004
[35] Tang S, Zhang L, Liu WK (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62:1443-1460 · Zbl 1471.74079 · doi:10.1007/s00466-018-1573-x
[36] Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197:3911-3921 · Zbl 1194.74514 · doi:10.1016/j.cma.2008.03.009
[37] Berdichevsky V (2009) Variational principles of continuum mechanics: I. Fundamentals. Springer Science & Business Media · Zbl 1183.49002
[38] Hu HC (1981) Variational principal of elastic mechanics and its applications. Science Publisher
[39] Simo JC, Hughes TJR (2006) Computational inelasticity. Springer Science & Business Media · Zbl 0934.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.