×

\(\mathcal{L}_2\) performance control of robot manipulators with kinematics, dynamics and actuator uncertainties. (English) Zbl 1369.93426

Summary: This paper deals with the task-space trajectory tracking control problem of robot manipulators. An improved adaptive backstepping controller is proposed to deal with the uncertainties in kinematics, dynamics, and actuator modeling. To avoid the explosion of computation in conventional backstepping techniques, a modified dynamic surface control algorithm is proposed, which guarantees the asymptotic convergence rather than the uniformly ultimately boundedness of tracking errors in conventional dynamic surface control methods. Furthermore, the expression of the \(\mathcal{L}_2\) norm of tracking errors is explicitly derived in relation to the controller parameters, which provides instructions on tuning controller parameters to adjust the system performance. Moreover, the passivity structure of the designed adaptation law is thoroughly analyzed. Simulation of a free-floating space robot is used to verify the effectiveness of the proposed control strategy in comparison with the conventional tracking control schemes.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C40 Adaptive control/observation systems
93C41 Control/observation systems with incomplete information
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lewis, Robot Manipulator Control: Theory and Practice (2004)
[2] Spong, Robot Dynamics and Control (2008)
[3] Huang, A class of transpose Jacobian-based NPID regulators for robot manipulators with an uncertain kinematics, Journal of Robotic Systems 19 (11) pp 527– (2002) · Zbl 1026.70009 · doi:10.1002/rob.10058
[4] Huang, PD plus error-dependent integral nonlinear controllers for robot manipulators with an uncertain Jacobian matrix, ISA Transactions 51 (6) pp 792– (2012) · doi:10.1016/j.isatra.2012.06.003
[5] Liu, Adaptive task-space regulation of rigid-link flexible-joint robots with uncertain kinematics, Automatica 44 (7) pp 1806– (2008) · Zbl 1149.93321 · doi:10.1016/j.automatica.2007.10.039
[6] Cheah, Adaptive Jacobian vision based control for robots with uncertain depth information, Automatica 46 (7) pp 1228– (2010) · Zbl 1194.93142 · doi:10.1016/j.automatica.2010.04.009
[7] Yazarel, Task-space adaptive control of robotic manipulators with uncertainties in gravity regressor matrix and kinematics, IEEE Transactions on Automatic Control 47 (9) pp 1580– (2002) · Zbl 1364.93527 · doi:10.1109/TAC.2002.802735
[8] Cheah, Approximate Jacobian control with task-space damping for robot manipulators, IEEE Transactions on Automatic Control 49 (5) pp 752– (2004) · Zbl 1365.93320 · doi:10.1109/TAC.2004.825971
[9] Cheah, Task-space PD control of robot manipulators: unified analysis and duality property, The International Journal of Robotics Research 27 (10) pp 1152– (2008) · Zbl 05744891 · doi:10.1177/0278364907096652
[10] Dixon, Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics, IEEE Transactions on Automatic Control 52 (3) pp 488– (2007) · Zbl 1366.93402 · doi:10.1109/TAC.2006.890321
[11] Liu, Task-space adaptive setpoint control for robots with uncertain kinematics and actuator model, IEEE Transactions on Automatic Control 50 (11) pp 1854– (2005) · Zbl 1365.93325 · doi:10.1109/TAC.2005.858664
[12] Cheah, Adaptive tracking control for robots with unknown kinematic and dynamic properties, International Journal of Robotics Research 25 (3) pp 283– (2006) · Zbl 05421986 · doi:10.1177/0278364906063830
[13] Liang, Adaptive task-space tracking control of robots without task-space- and joint-space-velocity measurements, IEEE Transactions on Robotics 26 (4) pp 733– (2010) · doi:10.1109/TRO.2010.2051594
[14] Liu, Adaptive Jacobian tracking control of rigid-link electrically driven robots based on visual task-space information, Automatica 42 (9) pp 1491– (2006) · Zbl 1128.93372 · doi:10.1016/j.automatica.2006.04.022
[15] Wang, Adaptive Jacobian position/force tracking control of free-flying manipulators, Robotics and Autonomous Systems 57 (2) pp 173– (2009) · Zbl 05724926 · doi:10.1016/j.robot.2008.05.003
[16] Wang, Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration, Automatica 45 (6) pp 1510– (2009) · Zbl 1166.93338 · doi:10.1016/j.automatica.2009.02.013
[17] Ahmadipour, Adaptive control of rigid-link electrically driven robots with parametric uncertainties in kinematics and dynamics and without acceleration measurements, Robotica 32 (7) pp 1153– (2014) · doi:10.1017/S0263574713001203
[18] Wang, Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics, Automatica 45 (9) pp 2114– (2009) · Zbl 1175.93117 · doi:10.1016/j.automatica.2009.05.011
[19] Garcia-Rodriguez, Cartesian sliding PID control schemes for tracking robots with uncertain Jacobian, Transactions of the Institute of Measurement and Control 34 (4) pp 448– (2012) · doi:10.1177/0142331210394908
[20] Wang, Prediction error based adaptive Jacobian tracking of robots with uncertain kinematics and dynamics, IEEE Transactions on Automatic Control 54 (12) pp 2889– (2009) · Zbl 1367.93412 · doi:10.1109/TAC.2009.2033764
[21] Wang, Prediction error based adaptive Jacobian tracking for free-floating space manipulators, IEEE Transactions on Aerospace and Electronic Systems 48 (4) pp 3207– (2012) · doi:10.1109/TAES.2012.6324694
[22] Cheng, Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model, Automatica 45 (10) pp 2312– (2009) · Zbl 1179.93110 · doi:10.1016/j.automatica.2009.06.007
[23] Cheah, Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models, IEEE Transactions on Automatic Control 51 (6) pp 1024– (2006) · Zbl 1366.93399 · doi:10.1109/TAC.2006.876943
[24] Umetani, Resolved motion rate control of space manipulators with generalized Jacobian matrix, IEEE Transactions on Robotics and Automation 5 (3) pp 303– (1989) · doi:10.1109/70.34766
[25] Dubowsky, The kinematics, dynamics, and control of free-flying and free-floating space robotic systems, IEEE Transactions on Robotics and Automation 9 (5) pp 531– (1993) · doi:10.1109/70.258046
[26] Zou, Robust attitude tracking control of spacecraft under control input magnitude and rate saturations, International Journal of Robust and Nonlinear Control 26 (4) pp 799– (2016) · Zbl 1333.93097 · doi:10.1002/rnc.3338
[27] Rong-Jong, Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics, IEEE Transactions on Fuzzy Systems 22 (4) pp 709– (2014) · doi:10.1109/TFUZZ.2013.2270010
[28] Zhao, Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method, International Journal of Robust and Nonlinear Control 25 (18) pp 3714– (2015) · Zbl 1336.93041 · doi:10.1002/rnc.3290
[29] Shen, Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form, Automatica 53 (0) pp 120– (2015) · Zbl 1371.93019 · doi:10.1016/j.automatica.2014.12.046
[30] Yip, Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems, International Journal of Control 71 (5) pp 959– (1998) · Zbl 0969.93037 · doi:10.1080/002071798221650
[31] Swaroop, Dynamic surface control for a class of nonlinear systems, IEEE Transactions on Automatic Control 45 (10) pp 1893– (2000) · Zbl 0991.93041 · doi:10.1109/TAC.2000.880994
[32] Liu, Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis, IEEE Transactions on Neural Networks and Learning Systems 25 (12) pp 2129– (2014) · doi:10.1109/TNNLS.2014.2305717
[33] Xu, Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form, IEEE Transactions on Cybernetics 44 (12) pp 2626– (2014) · doi:10.1109/TCYB.2014.2311824
[34] Park, Adaptive formation control of underactuated autonomous underwater vehicles, Ocean Engineering 96 pp 1– (2015) · doi:10.1016/j.oceaneng.2014.12.016
[35] Park, Neural network-based tracking control of underactuated autonomous underwater vehicles with model uncertainties, Journal of Dynamic Systems, Measurement and Control 137 (2) pp 021004 1– (2015)
[36] Ge, Stable Adaptive Neural Network Control (2002) · doi:10.1007/978-1-4757-6577-9
[37] Shores, Applied Linear Algebra and Matrix Analysis (2007) · Zbl 1128.15001 · doi:10.1007/978-0-387-48947-6
[38] Narendra, A new adaptive law for robust adaptation without persistent excitation, IEEE Transactions on Automatic Control 32 (2) pp 134– (1987) · Zbl 0617.93035 · doi:10.1109/TAC.1987.1104543
[39] Khalil, Nonlinear Systems (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.