×

Visual MISER: an efficient user-friendly visual program for solving optimal control problems. (English) Zbl 1325.49038

Summary: The FORTRAN MISER software package has been used with great success over the past two decades to solve many practically important real world optimal control problems. However, MISER is written in FORTRAN and hence not user-friendly, requiring FORTRAN programming knowledge. To facilitate the practical application of powerful optimal control theory and techniques, this paper describes a visual version of the MISER software, called Visual MISER. Visual MISER provides an easy-to-use interface, while retaining the computational efficiency of the original FORTRAN MISER software. The basic concepts underlying the MISER software, which include the control parameterization technique, a time scaling transform, a constraint transcription technique, and the co-state approach for gradient calculation, are described in this paper. The software structure is explained and instructions for its use are given. Finally, an example is solved using the new Visual MISER software to demonstrate its applicability.

MSC:

49M37 Numerical methods based on nonlinear programming
49M25 Discrete approximations in optimal control
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. U. Ahmed, <em>Dynamic Systems and Control with Applications</em>,, World Scientific (2006) · Zbl 1127.93001 · doi:10.1142/6262
[2] M. Athans, <em>Optimal Control</em>,, McGraw-Hill (1966) · Zbl 0186.22501
[3] V. Azhmyakov, Optimal control of mechanical systems,, Differential Equations and Nonlinear Mechanics (2007) · Zbl 1135.70010
[4] R. Bellman, <em>Dynamic Programming and Modern Control Theory</em>,, Orlands (1977) · Zbl 0139.04502
[5] A. E. Jr. Bryson, <em>Applied Optimal Control</em>,, Hemisphere Publishing (1975)
[6] C. Buskens, <em>NUDOCCCS, FORTRAN-Subroutine NUDOCCCS (Numerical Discretisation method for Optimal Control problems with Constraints in Controls and States)</em>,, 2010. <a href=
[7] C. Buskens, Nonlinear programming methods for real-time control of an industrial robot,, Journal of Optimization Theory and Applications, 107, 505 (2000) · Zbl 1168.93378 · doi:10.1023/A:1026491014283
[8] L. Cesari, <em>Optimization: Theory and Applications</em>,, Springer-Verlag (1983) · Zbl 0506.49001 · doi:10.1007/978-1-4613-8165-5
[9] Q. Q. Chai, Optimal control of an industrial-scale evaporation process: Sodium aluminate solution,, Control Engineering Practice, 20, 618 (2002) · doi:10.1016/j.conengprac.2012.03.001
[10] B. D. Craven, <em>Optimization in Economics and Finance</em>,, Springer (2005) · Zbl 1086.91046
[11] M. Fikar, Optimal Changeover Profiles for an Industrial Depropanizer,, Chemical Engineering Science, 54, 2715 (1999) · doi:10.1016/S0009-2509(98)00375-3
[12] M. E. Fisher, MATLAB MISER,, <a href=, 483
[13] P. E. Gill, User’s Guide for NPSOL 5.0: Fortran package for nonlinear programming,, 1986. <a href=
[14] W. E. Gruver, <em>Algorithmic Methods in Optimal Control</em>,, Research Notes in Mathematics (1981) · Zbl 0456.49001
[15] C. J. Goh, Control parameterization: a unified approach to optimal control problems with general constraints,, Automatica, 24, 3 (1988) · Zbl 0637.49017 · doi:10.1016/0005-1098(88)90003-9
[16] S. Gonzalez, Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions,, Journal of Optimization Theory and Applications, 26, 395 (1978) · Zbl 0406.49019 · doi:10.1007/BF00933463
[17] G. R. Duan, Optimal control for final approach of rendezvous with non-cooperative target,, Pacific Journal of Optimization, 6, 3157 (2010) · Zbl 1197.49044
[18] P. Howlett, The optimal control of a train,, Annals of Operations Research, 98, 65 (2000) · Zbl 0977.49026 · doi:10.1023/A:1019235819716
[19] H. Jaddu, Direct solution of nonlinear optimal control problems using quasilinearization and Chebyshev polynomials,, Journal of the Franklin Institute, 339, 479 (2002) · Zbl 1010.93507 · doi:10.1016/S0016-0032(02)00028-5
[20] L. S. Jennings, <em>MISER3.3 Optimal Control Software Version: Theory and User Manual</em>,, the University of Western Australia (2004)
[21] L. S. Jennings, A computational algorithm for functional inequality constrained optimization problems,, Automatica, 26, 371 (1990) · Zbl 0713.90079 · doi:10.1016/0005-1098(90)90131-Z
[22] C. Jiang, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8, 591 (2012) · Zbl 1292.90289 · doi:10.3934/jimo.2012.8.591
[23] C. Jiang, A suboptimal feedback control for nonlinear time-varying systems with continuous inequality constraints,, Automatica, 48, 660 (2012) · Zbl 1238.49053 · doi:10.1016/j.automatica.2012.01.019
[24] C. Jiang, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, Journal of Optimization Theory and Applications, 154, 30 (2012) · Zbl 1264.49036 · doi:10.1007/s10957-012-0006-9
[25] C. Y. Kaya, Euler discretization and inexact restoration for optimal control,, Journal of Optimization Theory and Applications, 134, 191 (2007) · Zbl 1135.49019 · doi:10.1007/s10957-007-9217-x
[26] C. Y. Kaya, Leapfrog for Optimal Control,, SIAM Journal on Numerical Analysis (2008) · Zbl 1178.49040 · doi:10.1137/060675034
[27] M. I. Kamien, <em>Dynamic Optimization - The Calculus of Variations and Optimal Control in Economics and Management</em>,, North Holland (1991) · Zbl 0727.90002
[28] T. T. Lam, Application of the sequential gradient restoration algorithm to terminal convective instability problems,, Journal of Optimization Theory and Applications, 49, 47 (1986) · Zbl 0569.49022 · doi:10.1007/BF00939247
[29] B. Li, Time optimal Zermelo’s navigation problem with moving and fixed obstacles,, Applied Mathematics and Computation, 224, 866 (2013) · Zbl 1337.49071 · doi:10.1016/j.amc.2013.08.092
[30] B. Li, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151, 260 (2011) · Zbl 1251.49026 · doi:10.1007/s10957-011-9904-5
[31] B. Li, An optimal PID controller design for nonlinear constrained optimal control problems,, Discrete and Continuous Dynamical Systems Series B, 16, 1101 (2011) · Zbl 1234.49031 · doi:10.3934/dcdsb.2011.16.1101
[32] B. Li, Optimal control computation for discrete time time-delayed optimal control problem with all-time-step inequality constraints,, International Journal of Innovative Computing, 6, 521 (2010)
[33] B. Li, An efficient computational approach to a class of minimax optimal control problems with applications,, Australian and New Zealand Industrial and Applied Mathematics Journal, 51, 162 (2009) · Zbl 1203.49034 · doi:10.1017/S1446181110000040
[34] C. J. Li, A constrained optimal pid-like controller design for spacecraft attitude stabilization,, Acta Astronautica, 74, 131 (2011) · doi:10.1016/j.actaastro.2011.12.021
[35] C. C. Lim, Optimal insulin infusion control to a mathematical blood glucoregulatory model with fuzzy parameters,, Cybernetics and Systems, 22, 1 (1991) · doi:10.1080/01969729108902267
[36] Q. Lin, The control parameterization for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10, 275 (2014) · Zbl 1276.49025 · doi:10.3934/jimo.2014.10.275
[37] R. Loxton, Optimal switching instants for a switched-capacitor DC/DC power converter,, Automatica, 45, 973 (2009) · Zbl 1162.49044 · doi:10.1016/j.automatica.2008.10.031
[38] R. Loxton, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45, 2250 (2009) · Zbl 1179.49032 · doi:10.1016/j.automatica.2009.05.029
[39] R. Loxton, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54, 2455 (2009) · Zbl 1367.93287 · doi:10.1109/TAC.2009.2029310
[40] R. Loxton, Control parameterization for optimal control problems with continuous inequality constraints: New convergence results,, Numerical Algebra, 2, 571 (2012) · Zbl 1256.65065 · doi:10.3934/naco.2012.2.571
[41] R. Loxton, Minimizing control variation in nonlinear optimal control,, Automatica, 49, 2652 (2013) · Zbl 1364.93052 · doi:10.1016/j.automatica.2013.05.027
[42] R. Loxton, Switching time optimization for nonlinear switched systems: Direct optimization and the time scaling transformation,, Pacific Journal of Optimization, 10, 537 (2014) · Zbl 1305.49042
[43] R. Luus, <em>Iterative Dynamic Programming</em>,, Chapman & Hall/CRC (2000) · Zbl 1070.49001 · doi:10.1201/9781420036022
[44] R. Luus, Towards practical optimal contorl of batch reactors,, Chemical Engineering Journal, 75, 1 (1999)
[45] R. Martin, <em>Optimal Control of Drug Administration in Cancer Chemotherapy</em>,, World Scientific (1994) · Zbl 0870.92006
[46] MATLAB - The Language of Technical Computing, <a href=“http://mathworks.com/products/matlab/” target=“_blank”>http://mathworks.com/products/matlab/</a>,, 2008.
[47] H. Maurer, Solution techniques for periodic control problems: a case study in production planning,, Optimal Control Applications and Methods, 19, 185 (1998) · doi:10.1002/(SICI)1099-1514(199805/06)19:3<185::AID-OCA627>3.0.CO;2-E
[48] H. H. Mehne, A numerical method for solving optimal control problems using state parametrization,, Numerical Algorithms, 42, 165 (2006) · Zbl 1101.65071 · doi:10.1007/s11075-006-9035-5
[49] A. Miele, Primal-dual properties of sequential gradient-restoration algorithms for optimal control problems, Part 2, General problem,, Journal of Mathematical Analysis and Applications, 119, 21 (1986) · Zbl 0621.49021 · doi:10.1016/0022-247X(86)90142-3
[50] H. J. Oberle, Numerical computation of optimal feed rates for a fed-batch fermentation model,, Journal of Optimization Theory and Applications, 100, 1 (1999) · Zbl 0925.93744
[51] R. Petzold, <em>LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff System</em>,, 2005.
[52] L. S. Pontryagin, <em>Mathematical Theory of Optimal Processes</em>,, CRC Press (1987) · Zbl 0629.26002
[53] V. Rehbock, Optimal control of a batch crystallization process,, Journal of Industrial and Management Optimization, 3, 331 (2007) · Zbl 1137.49035 · doi:10.3934/jimo.2007.3.585
[54] Y. Sakawa, Optimal control of container cranes,, Automatica, 18, 257 (1982) · Zbl 0488.93021 · doi:10.1016/0005-1098(82)90086-3
[55] K. Schittkowski, NLPQLP: A new fortran implementation of a sequential quadratic programming algorithm for parallel computing,, 2010.
[56] A. L. Schwartz, RIOTS-A Matlab toolbox for solving general optimal control problems,, 2008. <a href=
[57] Y. Shindo, Local convergence of an algorithm for solving optimal control problems,, Journal of Optimization Theory and Applications, 46, 265 (1985) · Zbl 0548.49015 · doi:10.1007/BF00939285
[58] W. Sun, <em>Optimization Theory and Methods</em>,, Springer (2006)
[59] K. L. Teo, <em>A Unified Computational Approach to Optimal Control Problems</em>,, Longman Scientific and Technical (1991) · Zbl 0747.49005
[60] K. L. Teo, The control parameterization enhancing transform for constrained optimal control problems,, Journal of Australian Mathematical Society, 40, 314 (1999) · Zbl 0929.49014 · doi:10.1017/S0334270000010936
[61] K. L. Teo, A new computational algorithm for functional inequality constrained optimization problems,, Automatica, 29, 789 (1993) · Zbl 0775.49003 · doi:10.1016/0005-1098(93)90076-6
[62] K. L. Teo, Nonlinearly constrained optimal control problems,, Journal of Australian Mathematical Society, 33, 517 (1992) · Zbl 0764.49017 · doi:10.1017/S0334270000007207
[63] K. L. Teo, A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free,, IMA - Journal of Mathematical Control and Information, 6, 81 (1989) · Zbl 0673.49013 · doi:10.1093/imamci/6.1.81
[64] K. L. Teo, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applications, 56, 145 (1988) · Zbl 0617.49014 · doi:10.1007/BF00938530
[65] N. S. Trahair, Optimum elastic columns,, International Journal of Mechanical Sciences, 12, 973 (1970) · doi:10.1016/0020-7403(70)90037-8
[66] O. von Stryk, Optimization of dynamic systems in industrial applications,, in Proc. 2nd European Congress on Intelligent Techniques and Soft Computing (EUFIT) (H.J. Zimmermann ed.), 347 (1994)
[67] C. Z. Wu, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2, 435 (2006) · Zbl 1112.49031 · doi:10.3934/jimo.2006.2.435
[68] J. L. Zhou, User’s guide for FFSQP version 3.7: A Fortran code for solving optimization programs, possibly minimax,with general inequality constraints and linear equality constraints, generating feasible iterates, (1997),, Institute for Systems Research, 92 (2074)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.