×

Global analysis of an SIR epidemic model with infection age and saturated incidence. (English) Zbl 1365.92117

Summary: Epidemic models with infection age have been extensively studied in the recent decades. Unfortunately, the incidence rate used is the bilinear one. As incidence rate plays an important role in disease transmission, in this paper, we study an SIR epidemic model with infection age and saturated incidence. We establish a threshold dynamics by applying the fluctuation lemma and Lyapunov functional. Roughly, if the basic reproduction number is less than \(1\), then the disease-free equilibrium is globally asymptotically stable; while if the basic reproduction number is larger than \(1\), then the endemic equilibrium is globally asymptotically stable in the set with initial infectivity.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Francis, D. F., Infection of chimpanzees with lymphadenopathy-associated virus, Lancet, 2, 1276-1277 (1984)
[2] Brauer, F.; Shuai, Z.; van den Driessche, P., Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10, 1335-1349 (2013) · Zbl 1273.92050
[3] Chen, Y.; Yang, J.; Zhang, F., The global stability of an SIRS model with infection age, Math. Biosci. Eng., 11, 449-469 (2014) · Zbl 1298.92096
[4] Ducrot, A.; Magal, P., Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24, 2891-2911 (2011) · Zbl 1227.92044
[5] Li, J.; Wang, L.; Zhao, H.; Ma, Z., Dynamical behavior of an epidemic model with coinfection of two diseases, Rocky Mountain J. Math., 38, 1457-1479 (2008) · Zbl 1194.37177
[6] Magal, P.; McCluskey, C., Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73, 1058-1095 (2013) · Zbl 1307.35306
[7] Martcheva, M.; Li, X.-Z., Competitive exclusion in an infection-age structured model with environmental transmission, J. Math. Anal. Appl., 408, 225-246 (2013) · Zbl 1306.92047
[8] McCluskey, C. C., Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9, 819-841 (2012) · Zbl 1259.34068
[9] Qiu, Z.; Feng, Z., Transmission dynamics of an influenza model with age of infection and antiviral treatment, J. Dynam. Differential Equations, 22, 823-851 (2010) · Zbl 1203.92050
[10] d’Onofrio, A., Vaccination policies and nonlinear force of infection: generalization of an observation by Alexander and Moghadas (2004), Appl. Math. Comput., 168, 613-622 (2005) · Zbl 1073.92050
[11] Capasso, V.; Serio, G., A generalization of the Kermack-Mackendric deterministic model, Math. Biosci., 42, 43-61 (1978) · Zbl 0398.92026
[12] Brown, G. C.; Hasibuan, R., Conidial discharge and transmission efficiency of Neozygites floridana, an Entomopathogenic fungus infecting two-spotted spider mites under laboratory conditions, J. Invertebr. Pathol., 65, 10-16 (1995)
[13] Naresh, R.; Tripathi, A.; Tchuenche, J. M.; Sharma, D., Stability analysis of a time delayed SIR epidemic model with nonlinear incidence rate, Comput. Math. Appl., 58, 348-359 (2009) · Zbl 1189.34098
[14] Enatsu, Y.; Nakata, Y., Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate, Math. Biosci. Eng., 11, 785-805 (2014) · Zbl 1312.34123
[15] Magal, P.; McCluskey, C. C.; Webb, G. F., Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89, 1109-1140 (2010) · Zbl 1208.34126
[16] Sigdel, R. P.; McCluskey, C. C., Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243, 684-689 (2014) · Zbl 1335.92101
[17] Moghadas, S. M.; Gumel, A. B., Global stability of a two-stage epidemic model with generalized non-linear incidence rate, Math. Comput. Simul., 60, 107-118 (2002) · Zbl 1005.92031
[18] Liu, W. M.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23, 187-204 (1986) · Zbl 0582.92023
[19] Huang, G.; Takeuchi, Y.; Ma, W.; Wei, D., Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72, 1192-1207 (2010) · Zbl 1197.92040
[20] Li, M.; Liu, X., An SIR epidemic model with time delay and general nonlinear incidence rate, Abstr. Appl. Anal., 7 (2014), Art. ID 131257 · Zbl 1406.92592
[21] McCluskey, C. C., Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. RWA, 11, 3106-3109 (2010) · Zbl 1197.34166
[22] Sun, R., Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60, 2286-2291 (2010) · Zbl 1205.34066
[23] Xu, R.; Ma, Z., Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA, 10, 3175-3189 (2009) · Zbl 1183.34131
[24] Iannelli, M., (Mathematical Theory of Age-structured Population Dynamics. Mathematical Theory of Age-structured Population Dynamics, Applied Mathematics Monographs, vol. 7 (1995), comitato Nazionale per le Scienze Matematiche, Consiglio Nazionale delle Ricerche (C.N.R.): comitato Nazionale per le Scienze Matematiche, Consiglio Nazionale delle Ricerche (C.N.R.) Giardini, Pisa)
[25] Magal, P., Compact attrators for time periodic age-structured population models, Electron. J. Differential Equations, 65, 1-35 (2001)
[26] Browne, C. J.; Pilyugin, S. S., Global analysis of age-structured within-host virus model, Discrete Contin. Dyn. Syst. Ser. B, 18, 1999-2017 (2013) · Zbl 1347.92080
[27] Iannelli, M., Mathematical Theory of Age-Structured Population Dynamics (1995), Giardini Editori E Stampatori: Giardini Editori E Stampatori Pisa
[28] Webb, G. F., Theory of Nonlinear Age-Dependent Population Dynamics (1985), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0555.92014
[29] Hirsch, W. M.; Hanisch, H.; Gabriel, J.-P., Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38, 733-753 (1985) · Zbl 0637.92008
[30] Smith, H. L.; Thieme, H. R., Dynamical Systems and Population Persistence (2011), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1214.37002
[31] Hale, J. K., Asymptotic Behavior of Dissipative Systems (1988), AMS: AMS Providence, RI · Zbl 0642.58013
[32] Yasida, K., Functional Analysis (1968), Berlin, Heidelberg, Springer-Verlag: Berlin, Heidelberg, Springer-Verlag New York
[33] Thieme, H. R., Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci., 166, 173-201 (2000) · Zbl 0970.37061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.