×

Finite-SNR diversity-multiplexing tradeoff for cooperative transmissions with opportunistic network coding. (English) Zbl 1264.94058

Summary: We present a multiuser cooperative transmission scheme with opportunistic network coding (CTONC), which can improve system performance. In contrast to direct transmission and conventional cooperative transmission, the CTONC allows the relay node to decide whether or not to help do cooperation and employ network coding based on the limited feedback from the destinations. It will not help a transmission pair unless its direct transmission fails. This enables CTONC to make efficient use of the degrees of freedom of the channels. We derive and analyze the diversity-multiplexing tradeoff for the CTONC over Rayleigh fading channels at finite signal-to-noise ratios (SNRs). Theoretical analysis and numerical results show that the proposed scheme achieves better performance gain in terms of average mutual information, outage probability, and finite-SNR diversity-multiplexing tradeoff.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A29 Source coding
94A40 Channel models (including quantum) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part I: system description,” IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927-1938, 2003. · doi:10.1109/TCOMM.2003.818096
[2] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3080, 2004. · Zbl 1316.94050 · doi:10.1109/TIT.2004.838089
[3] G. Kramer, I. Marić, and R. D. Yates, “Cooperative communications,” Foundations and Trends in Networking, vol. 1, no. 3-4, pp. 271-425, 2006. · doi:10.1561/1300000004
[4] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp. 1073-1096, 2003. · Zbl 1063.94531 · doi:10.1109/TIT.2003.810646
[5] K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4152-4172, 2005. · Zbl 1282.94023 · doi:10.1109/TIT.2005.858920
[6] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 659-672, 2006. · doi:10.1109/JSAC.2005.862417
[7] S. Loyka and G. Levin, “Diversity-multiplexing tradeoff in the low-SNR regime,” IEEE Communications Letters, vol. 15, no. 5, pp. 542-544, 2011. · doi:10.1109/LCOMM.2011.030911.110078
[8] R. Narasimhan, “Finite-SNR diversity-multiplexing tradeoff for correlated Rayleigh and Rician MIMO channels,” IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 3965-3979, 2006. · Zbl 1309.94108 · doi:10.1109/TIT.2006.880057
[9] E. Stauffer, O. Oyman, R. Narasimhan, and A. Paulraj, “Finite-SNR diversity-multiplexing tradeoffs in fading relay channels,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 245-257, 2007. · doi:10.1109/JSAC.2007.070202
[10] Y. Liu, P. Dharmawansa, M. R. McKay, and K. B. Letaief, “Finite-SNR diversity-multiplexing trade-off of dual hop multiple-relay channels,” IEEE Transaction on Communications, vol. 60, no. 5, pp. 1451-1463, 2012. · doi:10.1109/TCOMM.2012.041212.100768
[11] R. Ahlswede, N. Cai, S. Y. Li, and R. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204-1216, 2000. · Zbl 0991.90015 · doi:10.1109/18.850663
[12] S. Katti, H. S. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in the air: practical wireless network coding,” in Proceedings of the ACM SIGCOMM, pp. 243-254, 2006.
[13] S. Sharma, Y. Shi, J. Liu, Y. T. Hou, and S. Kompella, “Is network coding always good for cooperative communications?” in Proceedings of the IEEE INFOCOM 2010, pp. 1-9, San Diego, Calif, USA, March 2010. · doi:10.1109/INFCOM.2010.5462021
[14] Y. Chen, S. Kishore, and J. Li, “Wireless diversity through network coding,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’06), vol. 3, pp. 1681-1686, April 2006.
[15] C. Peng, Q. Zhang, M. Zhao, Y. Yao, and W. Jia, “On the performance analysis of network-coded cooperation in wireless networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3090-3097, 2008. · doi:10.1109/TWC.2008.061111
[16] Z. Yi, M. Ju, and I. M. Kim, “Outage probability and optimum power allocation for analog network coding,” IEEE Transactions on Wireless Communications, vol. 10, no. 2, pp. 407-412, 2011. · doi:10.1109/TWC.2011.120810.100873
[17] I. Maric, A. Goldsmith, and M. Medard, “Analog network coding in the high-SNR regime,” in Proceedings of the IEEE Wireless Network Coding Conference (WiNC’2010), pp. 1-6, Bostn, Mass, USA. · doi:10.1109/WINC.2010.5507937
[18] M. Li, Y. Q. Chen, J. Y. Li, and W. Zhao, “Hölder scales of sea level,” Mathematical Problems in Engineering, vol. 2013, Article ID 863707, 2013. · Zbl 06173650 · doi:10.1155/2012/863707
[19] M. Li and W. Zhao, “Quantitatively investigating the locally weak stationarity of modified multifractional Gaussian noise,” Physica A, vol. 391, no. 24, pp. 6268-6278, 2012. · doi:10.1016/j.physa.2012.07.043
[20] M. Li and W. Zhao, “On 1/f noise,” Mathematical Problems in Engineering, vol. 2013, Article ID 673648, 2013. · Zbl 1264.94060 · doi:10.1155/2012/673648
[21] R. Narasimhan, “Finite-SNR diversity performance of rate-adaptive MIMO systems,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’05), pp. 1461-1465, December 2005. · doi:10.1109/GLOCOM.2005.1577893
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.