×

zbMATH — the first resource for mathematics

The asymptotic estimate of ruin probability under a class of risk model in the presence of heavy tails. (English) Zbl 1153.60338
Summary: In contrast with the classical Cramér-Lundberg model where the premium process is a linear function of time, we consider the ruin probability under the risk model where the aggregate premium consists of both a compound Poisson process and a linear process of time. Moreover, a constant interest force is also taken into account in our model. We restrict ourselves to the case where the claim size is heavy-tailed, i.e., the equilibrium distribution function of the claim size belongs to a wide subclass of the subexponential distribution. An asymptotic formula for the ruin probability is obtained by using the similar method of V. Kalashnikov and D. Konstantinides [Insur. Math. Econ. 27, No. 1, 145–149 (2000; Zbl 1056.60501)]. The asymptotic formula we get here is the same as the one in [S. Asmussen, Ann. Appl. Probab. 8, No. 2, 354–374 (1998; Zbl 0942.60034), C. Klüppelberg and U. Stadtmüller, Scand. Actuarial J. 1998, No. 1, 49–58 (1998; Zbl 1022.60083) and Kalashnikov and Konstantinides (loc. cit.)] which did not consider the stochastic premium.

MSC:
60G05 Foundations of stochastic processes
60G50 Sums of independent random variables; random walks
62P05 Applications of statistics to actuarial sciences and financial mathematics
91B30 Risk theory, insurance (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1214/aoap/1028903531 · Zbl 0942.60034 · doi:10.1214/aoap/1028903531
[2] DOI: 10.1137/S0040585X9797987 · doi:10.1137/S0040585X9797987
[3] DOI: 10.1016/S0167-6687(02)00120-8 · Zbl 1074.91027 · doi:10.1016/S0167-6687(02)00120-8
[4] DOI: 10.1016/S0167-6687(00)00045-7 · Zbl 1056.60501 · doi:10.1016/S0167-6687(00)00045-7
[5] Klüppelberg C., Scand. Actuarial J. 1 pp 49– (1998)
[6] DOI: 10.1016/S0167-6687(02)00189-0 · Zbl 1074.91029 · doi:10.1016/S0167-6687(02)00189-0
[7] Melnikov A., Risk Analysis in Finance and Insurance (2004) · Zbl 1031.91087
[8] DOI: 10.1016/0167-6687(94)00023-8 · Zbl 0838.62098 · doi:10.1016/0167-6687(94)00023-8
[9] DOI: 10.1023/B:JOTH.0000036319.21285.22 · Zbl 1065.91040 · doi:10.1023/B:JOTH.0000036319.21285.22
[10] DOI: 10.1016/j.insmatheco.2004.07.002 · Zbl 1122.91347 · doi:10.1016/j.insmatheco.2004.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.