×

On formulas for Dedekind sums and the number of lattice points in tetrahedra. (English) Zbl 1246.11165

Summary: This paper explores a simple yet powerful relationship between the problem of counting lattice points and the computation of Dedekind sums. We begin by constructing and proving a sharp upper estimate for the number of lattice points in tetrahedra with some irrational coordinates for the vertices. Besides providing a sharper estimate, this upper bound (Theorem 1.1) becomes an equality (i.e. gives the exact number of lattice points) in a tetrahedron where the lengths of the edges divide each other. This equality condition can then be applied to the explicit computation of the classical Dedekind sums, a topic that is the central focus in the second half of our paper. In this half of the paper, we come up with a number of interesting results related to Dedekind sums, based on our upper estimate (Theorem 1.1). Among these findings, Theorem 1.9 and Theorem 1.10 deserve special attention, for they successfully generalize two of Apostol’s formulas in [T. M. Apostol, Modular functions and Dirichlet series in number theory. 2nd ed. New York: Springer-Verlag (1990; Zbl 0697.10023)], and also directly imply the famous Reciprocity Law of Dedekind sums.

MSC:

11P21 Lattice points in specified regions
11F20 Dedekind eta function, Dedekind sums

Citations:

Zbl 0697.10023
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Apostol, T. M., Modular Functions and Dirichlet Series in Number Theory (1997), Springer-Verlag: Springer-Verlag New York
[2] Beck, M., The reciprocity law for Dedekind sums via the constant Ehrhart coefficient, Amer. Math. Monthly, 106, 5, 459-462 (1999) · Zbl 0979.05004
[3] M. Benson, private communication, September 22, 1997; M. Benson, private communication, September 22, 1997
[4] Brion, M.; Vergne, M., Lattice points in simple polytopes, J. Amer. Math. Soc., 10, 371-392 (1997) · Zbl 0871.52009
[5] Carlitz, L., Some theorems on generalized Dedekind sums, Pacific J. Math., 3, 513-522 (1953) · Zbl 0057.03701
[6] Cappell, S.; Shaneson, J., Genera of algebraic varieties and counting lattice points, Bull. Amer. Math. Soc., 30, 62-69 (1994) · Zbl 0847.14010
[7] Dedekind, R., Erlauterungen zu den Fragmenten XXVIII, (Collected Works of Bernhard Riemann (1953), Dover: Dover New York), 466-478
[8] U. Dieter, Zur Theorie der Dedekindschen Summen, Inauguraldissertation, Kiel, 1957; U. Dieter, Zur Theorie der Dedekindschen Summen, Inauguraldissertation, Kiel, 1957
[9] Diaz, R.; Robins, S., The Ehrhart polynomial of a lattice polytope, Ann. of Math., 145, 503-518 (1997) · Zbl 0874.52009
[10] Hardy, G. H., On certain series of discontinuous functions and analogues of Dedekind sums, Q. J. Math., 36, 93-123 (1905)
[11] Hardy, G. H.; Littlewood, J. E., Some problems of diophantine approximation, (Proc. 5th Int. Congress of Mathematics (1912), Cambridge University Press: Cambridge University Press Cambridge), 223-229
[12] Hardy, G. H.; Littlewood, J. E., The lattice points of a right-angled triangle, Proc. London Math. Soc. (2), 20, 15-36 (1921) · JFM 48.0197.07
[13] Hardy, G. H.; Littlewood, J. E., The lattice points of a right-angled triangle (second memoir), Hamburg Math. Abh., 1, 212-249 (1922)
[14] Hardy, G. H.; Littlewood, J. E., A series of coseconts, Bull. Calcutta Math. Soc., 20, 251-266 (1930) · JFM 56.0897.01
[15] F. Hirzebruch, D. Zagier, P. Gunnells, The Atiyah-Singer theorem and elementary number theory, new edition, in preparation; F. Hirzebruch, D. Zagier, P. Gunnells, The Atiyah-Singer theorem and elementary number theory, new edition, in preparation · Zbl 0288.10001
[16] Kantor, J. M.; Khovänskii, A., Une Application du Theoreme de Riemann-Roch Combinatoire au Polynome d’Ehrhart des Polytopes Entier de \(R^d\), C. R. Acad. Sci. Paris Ser. I, 317, 501-507 (1993) · Zbl 0791.52012
[17] Knopp, M. I., Hecke operators and an identity for the Dedekind sums, J. Number Theory, 12, 2-9 (1980) · Zbl 0423.10015
[18] Lin, K.-P.; Yau, S. S.-T., Analysis of sharp polynomial upper estimate of number of positive integral points in 4-dimensional tetrahedra, J. Reine Angew. Math., 547, 191-205 (2002) · Zbl 1013.11064
[19] Lin, K.-P.; Yau, S. S.-T., A sharp upper estimate of the number of integral points in 5-dimensional tetrahedra, J. Number Theory, 93, 207-234 (2002) · Zbl 0992.11057
[20] Lin, K.-P.; Yau, S. S.-T., Classification of affine varieties being cones over nonsingular projective varieties: Hypersurface case, Comm. Anal. Geom., 12, 5, 1201-1219 (2004) · Zbl 1072.32022
[21] Mordell, L. J., Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math., 15, 41-46 (1951) · Zbl 0043.05101
[22] Pommersheim, J. E., Toric varieties, lattice points, and Dedekind sums, Math. Ann., 295, 1-24 (1993) · Zbl 0789.14043
[23] Rademacher, H.; Grosswald, E., Dedekind Sums (1972), Math. Assoc. Amer.: Math. Assoc. Amer. Washington, DC · Zbl 0251.10020
[24] Sitaramachandrarao, R., Dedekind and Hardy sums, Acta Arith., XLXIII (1987) · Zbl 0635.10002
[25] Spencer, D. C., On a Hardy-Littlewood problem of diophantine approximation, Math. Proc. Cambridge Philos. Soc., 35, 527-547 (1939) · Zbl 0022.30904
[26] Spencer, D. C., The lattice points of tetrahedra, J. Math. Phys., 21, 189-197 (1942) · Zbl 0060.11501
[27] Wang, X.; Yau, S. S.-T., On the GLY conjecture of upper estimate of positive integral points in real tetrahedra, J. Number Thery, 122, 1, 184-210 (2007) · Zbl 1115.11062
[28] Xu, Y.-J.; Yau, S. S.-T., A sharp estimate of the number of integral points in a tetrahedron, J. Reine Angew. Math., 423, 199-219 (1992) · Zbl 0734.11048
[29] Xu, Y.-J.; Yau, S. S.-T., Sharp estimate of the number of integral points in a 4-dimensional tetrahedron, J. Reine Angew. Math., 473, 1-23 (1996) · Zbl 0844.11063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.