Yılmaz, A.; Yıldız, M.; Görentaş, N. Rings isomorphic to \(3\times 3\) matrix rings. (English) Zbl 0793.16019 Hacet. Bull. Nat. Sci. Eng., Ser. B 21, 13-15 (1992). It is shown that a ring \(R\) with identity element is isomorphic to a full 3 by 3 matrix ring if and only if there are non-zero elements \(x\), \(y\), \(z\), \(a\) of \(R\) such that \(x^ 2 = 0 = z^ 2\), \(y^ 2 = y\), \((x + y + z)^ 2 = 1\), \(a = ay + ya = a(x + z) + (x + z)a\), and \(y\) annihilates both \(x\) and \(z\). Reviewer: A.W.Chatters (Bristol) MSC: 16S50 Endomorphism rings; matrix rings 16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras) Keywords:full 3 by 3 matrix ring PDF BibTeX XML Cite \textit{A. Yılmaz} et al., Hacet. Bull. Nat. Sci. Eng., Ser. B 21, 13--15 (1992; Zbl 0793.16019) OpenURL