×

Search for the limits on anomalous neutral triple gauge couplings via \(ZZ\) production in the \(\ell\ell\nu \nu \) channel at FCC-hh. (English) Zbl 07408591

Summary: This paper presents the projections on the anomalous neutral triple gauge couplings \((aNTGC)\) via \(pp \to ZZ\) production in the \(2\ell2\nu\) final state at a 100 TeV proton-proton collider, FCC-hh. The realistic FCC-hh detector environments and its effects taken into account in the analysis. The study is carried out in the mode where one Z boson decays into a pair of same-flavor, opposite-sign leptons (electrons or muons) and the other one decays to the two neutrinos. The new bounds on the charge-parity (CP)-conserving couplings \(C_{\widetilde{B}W}/\Lambda^4\) and CP-violating couplings \(C_{WW}/\Lambda^4\), \(C_{BW}/\Lambda^4\) and \(C_{BB}/\Lambda^4\) achieved at 95% Confidence Level (C.L.) using the transverse momentum of the dilepton system (\(p_T^{\ell \ell}\)) are \([-0.042, +0.042]\), \([-0.049, +0.049]\), \([-0.048, +0.048]\), and \([-0.047, +0.047]\) in units of \(\mathrm{TeV}^{-4} \), respectively.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Pich, A., (2010 European School of High Energy Physics (2012)), 1-50
[2] Neubauer, M. S., Annu. Rev. Nucl. Part. Sci., 61, 223 (2011)
[3] Baur, U.; Rainwater, D., Phys. Rev. D, 62, Article 113011 pp. (2000)
[4] Green, D. R.; Meade, P.; Pleier, M.-A., Rev. Mod. Phys., 89, Article 035008 pp. (2017)
[5] Degrande, C., J. High Energy Phys., 2014 (2014)
[6] Baur, U.; Berger, E. L., Phys. Rev. D, 47, 4889 (1993)
[7] Dawson, S.; Gupta, S. K.; Valencia, G., Phys. Rev. D, 88, Article 035008 pp. (2013)
[8] Rahaman, R.; Singh, R. K., Nucl. Phys. B, 948, Article 114754 pp. (2019)
[9] Aaltonen, T., Phys. Rev. Lett., 108, Article 101801 pp. (2012)
[10] Aaltonen, T., Phys. Rev. D, 89, Article 112001 pp. (2014)
[11] Abazov, V., Phys. Rev. D, 78, Article 072002 pp. (2008)
[12] Aaboud, M., J. High Energy Phys., 10, Article 127 pp. (2019)
[13] Sirunyan, A. M., J. High Energy Phys., 03, Article 003 pp. (2018)
[14] Senol, A., Int. J. Mod. Phys. A, 29, Article 1450148 pp. (2014)
[15] Mangano, M. L., The Standard Theory of Particle Physics, 231 (2016)
[16] Frye, C.; Freytsis, M.; Scholtz, J.; Strassler, M. J., J. High Energy Phys., 2016 (2016)
[17] Dorigo, T., Prog. Part. Nucl. Phys., 100, 211 (2018)
[18] Senol, A.; Denizli, H.; Yilmaz, A.; Cakir, I. T.; Oyulmaz, K.; Karadeniz, O.; Cakir, O., Nucl. Phys. B, 935, 365 (2018)
[19] Senol, A.; Denizli, H.; Yilmaz, A.; Turk Cakir, I.; Cakir, O., Phys. Lett. B, 802, Article 135255 pp. (2020)
[20] Khanpour, H., Nucl. Phys. B, 958, Article 115141 pp. (2020)
[21] Hernández-Juárez, A. I.; Moyotl, A.; Tavares-Velasco, G., Eur. Phys. J. C, 81, 304 (2021)
[22] Sirunyan, A. M., Eur. Phys. J. C, 81, 200 (2021)
[23] Yilmaz, A.; Senol, A.; Denizli, H.; Cakir, I. T.; Cakir, O., Eur. Phys. J. C, 80 (2020)
[24] Abada, A.; Abbrescia, M.; AbdusSalam, S. S.; Abdyukhanov, I.; Fernandez, J. A.; Abramov, A.; Aburaia, M.; Acar, A. O.; Adzic, P. R., Eur. Phys. J. C, 79 (2019)
[25] Abada, A.; Abbrescia, M.; AbdusSalam, S. S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A. O.; Adzic, P. R., Eur. Phys. J. Spec. Top., 228, 755 (2019)
[26] Abazov, V. M.; Abbott, B., Phys. Rev. D, 78, Article 072002 pp. (2008)
[27] Aaboud, M.; Aad, G.; Abbott, B., J. High Energy Phys., 2019 (2019)
[28] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T., Comput. Phys. Commun., 183, 1201 (2012)
[29] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.-S.; Stelzer, T.; Torrielli, P.; Zaro, M., J. High Energy Phys., 2014 (2014)
[30] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C. O.; Skands, P. Z., Comput. Phys. Commun., 191, 159 (2015)
[31] de Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M., J. High Energy Phys., 2014 (2014)
[32] Demin, P.
[33] Brun, R.; Rademakers, F., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip., 389, 81 (1997), new Computing Techniques in Physics Research V
[34] Tanabashi, M., Phys. Rev. D, 98, Article 030001 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.