×

A numerical simulation method for dissolution in porous and fractured media. (English) Zbl 1425.76255

Summary: We describe an algorithm for simulating reactive flows in porous media, in which the pore space is mapped explicitly. Chemical reactions at the solid-fluid boundaries lead to dissolution (or precipitation), which makes it necessary to track the movement of the solid-fluid interface during the course of the simulation. We have developed a robust algorithm for constructing a piecewise continuous \((C_{1})\) surface, which enables a rapid remapping of the surface to the grid lines. The key components of the physics are the Navier-Stokes equations for fluid flow in the pore space, the convection-diffusion equation to describe the transport of chemical species, and rate equations to model the chemical kinetics at the solid surfaces. A lattice-Boltzmann model was used to simulate fluid flow in the pore space, with linear interpolation at the solid boundaries. A finite-difference scheme for the concentration field was developed, taking derivatives along the direction of the local fluid velocity. When the flow is not aligned with the grid this leads to much more accurate convective fluxes and surface concentrations than a standard Cartesian template. A robust algorithm for the surface reaction rates has been implemented, avoiding instabilities when the surface is close to a grid point. We report numerical tests of different aspects of the algorithm and assess the overall convergence of the method.

MSC:

76S05 Flows in porous media; filtration; seepage
76M28 Particle methods and lattice-gas methods
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

nag; NAG
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] MacQuarrie, K.T.B.; Mayer, K.U., Reactive transport modeling in fractured rock: a state-of-the-science review, Earth sci. rev., 72, 189-227, (2005)
[2] Steefel, C.I., Geochemical kinetics and transport, (), 545-589
[3] Cailly, B.; Thiez, P.L.; Egermann, P.; Audibert, A.; Vidal-Gilbert, S.; Longaygue, X., Geological storage of CO_{2}: a state-of-the-art of injection processes and technologies, Oil gas sci. technol., 60, 517-525, (2005)
[4] Ennis-King, J.; Paterson, L., Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide, Int. J. Green gas cont., 1, 86-93, (2007)
[5] Hoefner, M.L.; Fogler, H.S., Pore evolution and channel formation during flow and reaction in porous media, Aiche j., 34, 45-54, (1988)
[6] Siemers, J.; Dreybrodt, W., Early development of karst aquifers on percolation networks of fractures in limestone, Water resour. res., 34, 409-419, (1998)
[7] Hanna, R.B.; Rajaram, H., Influence of aperture variability on dissolutional growth of fissures in karst formations, Water resour. res., 34, 2843-2853, (1998)
[8] Golfier, F.; Zarcone, C.; Bazin, B.; Lenormand, R.; Lasseux, D.; Quintard, M., On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J. fluid mech., 457, 213-254, (2002) · Zbl 1016.76079
[9] Cohen, C.; Ding, D.; Quintard, M.; Bazin, B., From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chem. eng. sci., 63, 3088-3099, (2008)
[10] Cheung, W.; Rajaram, H., Dissolution finger growth in variable aperture fractures: role of the tip-region flow field, Geophys. res. lett., 29, 2075, (2002)
[11] Békri, S.; Thovert, J.-F.; Adler, P.M., Dissolution of porous media, Chem. eng. sci., 50, 2765-2791, (1995)
[12] Békri, S.; Thovert, J.-F.; Adler, P.M., Dissolution and deposition in fractures, Eng. geol., 48, 283-308, (1997)
[13] Verberg, R.; Ladd, A.J.C., Simulation of chemical erosion in rough fractures, Phys. rev. E, 65, 056311, (2002)
[14] Kang, Q.J.; Zhang, D.X.; Chen, S.Y., Simulation of dissolution and precipitation in porous media, J. geophys. res., 108, B102505, (2003)
[15] Kang, Q.J.; Lichtner, P.C.; Zhang, D.X., An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale, Water resour. res., 43, W12S14, (2007)
[16] Kang, Q.J.; Lichtner, P.C.; Viswanathan, H.S.; Abdel-Fattah, A.I., Pore scale modeling of reactive transport involved in geologic CO_{2} sequestration, Transport porous med., 82, 197-213, (2010)
[17] Verberg, R.; Ladd, A.J.C., Lattice-Boltzmann model with sub-grid scale boundary conditions, Phys. rev. lett, 84, 2148-2151, (2000)
[18] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. trans. R. soc. lond. A, 360, 437-451, (2002) · Zbl 1001.76081
[19] Szymczak, P.; Ladd, A.J.C., Boundary conditions for stochastic solutions of the convection – diffusion equation, Phys. rev. E., 68, 036704, (2003)
[20] Szymczak, P.; Ladd, A.J.C., Stochastic boundary conditions to the convection – diffusion equation including chemical reactions at solid surfaces, Phys. rev. E., 69, 036704, (2004)
[21] Szymczak, P.; Ladd, A.J.C., Microscopic simulations of fracture dissolution, Geophys. res. lett., 31, L23606, (2004)
[22] Szymczak, P.; Ladd, A.J.C., A network model of channel competition in fracture dissolution, Geophys. res. lett., 33, L05401, (2006)
[23] Szymczak, P.; Ladd, A.J.C., Wormhole formation in dissolving fractures, J. geophys. res., 114, B06203, (2009)
[24] Warren, P.B., Electroviscous transport problems via lattice-Boltzmann, Int. J. mod. phys. C, 8, 889-898, (1997)
[25] Rasin, I.; Succi, S.; Miller, W., A multi-relaxation lattice kinetic method for passive scalar diffusion, J. comp. phys., 205, 451-462, (2005) · Zbl 1120.76354
[26] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. water resour., 28, 1171-1195, (2005)
[27] Kaandorp, J.A.; Lowe, C.P.; Frenkel, D.; Sloot, P.M.A., Effect of nutrient diffusion and flow on coral morphology, Phys. rev. lett., 77, 2328-2331, (1996)
[28] Yu, D.; Girimaji, S.S.; Ladd, A.J.C., Revised moment propagation method for scalar transport, Phys. rev. E, 78, 056706, (2008)
[29] Stiebler, M.; Tölke, J.; Krafczyk, M., Advection-diffusion lattice Boltzmann scheme for hierarchical grids, Comput. math. appl., 55, 1576-1584, (2008), (Mesoscopic Methods in Engineering and Science) · Zbl 1142.76455
[30] NAG, NAG Fortran library manual, mark 18, (1997), The Numerical Algorithms Group Limited Oxford
[31] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, (), 329-364 · Zbl 1398.76180
[32] Montani, C.; Scateni, R., A modified look-up table for implicit disambiguation of marching cubes, Visual comput., 10, 353-355, (1994)
[33] Goodman, T.N.T.; Said, H.B., A C1 triangular interpolant suitable for scattered data interpolation, Commun. appl. numer. M, 7, 479-485, (1991) · Zbl 0746.65007
[34] Lorensen, W.E.; Cline, H.E., Marching cubes: a high resolution 3D surface construction algorithm, Comput. graph., 21, 163-169, (1987)
[35] Ahrenholz, B.; Tölke, J.; Krafczyk, M., Lattice-Boltzmann simulations in reconstructed parametrized porous media, Int. J. comput. fluid D, 20, 369-377, (2006) · Zbl 1370.76141
[36] Frisch, U.; d’Humières, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J.-P., Lattice gas hydrodynamics in two and three dimensions, Complex syst., 1, 649, (1987) · Zbl 0662.76101
[37] Qian, Y.H.; d’Humières, D.; Lallemand, P., Lattice BGK models for the navier – stokes equation, Europhys. lett., 17, 479-484, (1992) · Zbl 1116.76419
[38] d’Humières, D., Generalized lattice Boltzmann equations, Prog. astronaut. aeronaut., 159, 450-458, (1992)
[39] Chun, B.; Ladd, A.J.C., Interpolated boundary condition for lattice-Boltzmann simulations of flows in narrow gaps, Phys. rev. E, 75, 066705, (2007)
[40] Ginzburg, I.; d’Humières, D., Multireflection boundary conditions for lattice Boltzmann models, Phys. rev. E, 68, 066614, (2003)
[41] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. fluids, 13, 3452-3459, (2001) · Zbl 1184.76068
[42] Yu, D.Z.; Mei, R.W.; Luo, L.S.; Shyy, W., Viscous flow computations with the method of lattice Boltzmann equation, Prog. aerosp. sci, 39, 329-367, (2003)
[43] Shyy, W., Computational modeling for fluid flow and interfacial transport, (1994), Elsevier Amsterdam, The Netherlands
[44] Cichocki, B.; Jones, R.B.; Kutteh, R.; Wajnryb, E., Friction and mobility for colloidal spheres in Stokes flow near a boundary: the multipole method and applications, J. chem. phys., 112, 2548-2561, (2000)
[45] Detwiler, R.L.; Glass, R.J.; Bourcier, W.L., Experimental observations of fracture dissolution: the role of Péclet number in evolving aperture variability, Geophys. res. lett., 30, 1648, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.