×

A transmission-limit inspired immunization strategy for weighted network epidemiology. (English) Zbl 1423.92244

Summary: In this paper, we study a new type of immunization strategy which is applied to weighted networks. It helps us in maintaining the necessary network efficiency by limiting the transmission (lowering the weight of edges) while suppressing the spread of the epidemic. It is similar to the inflammation around the infected parts of our body, which can not only prevent the disease spreading but also protect the function of the body. First, we set the rate of transmission to be proportional to the edge weight based on the \(S\)-\(I\) epidemic spreading model. Then, we show the detailed dynamic evolution of the infected nodes which facilitates an effective epidemic control. Theoretical analysis and simulation results indicate that the new immunization strategy can be used to prevent the epidemic spreading effectively, while maintaining the high efficiency of the network.

MSC:

92D30 Epidemiology
05C82 Small world graphs, complex networks (graph-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pastor-Satorras, R. and Vespignani, A., Phys. Rev. Lett.86, 3200 (2001).
[2] Bu, Z.et al., Knowl. Based Syst.103, 60 (2016).
[3] Balci, M. A., Open Math.14, 1074 (2016). · Zbl 1354.91177
[4] Arino, J., Infect. Dis. Model.2, 218 (2017).
[5] Barabasi, A.-L. and Albert, R., Science286, 509 (1999). · Zbl 1226.05223
[6] Wang, X. F. and Chen, G., IEEE T. Circuits I3, 6 (2003).
[7] Wang, Z.et al., Phys. Rep.664, 1 (2016).
[8] Gao, C.et al., PLoS One11, e0161755 (2016).
[9] Wang, X. F. and Chen, G. R., IEEE T. Circuits I50, 812 (2003).
[10] Pastor Satorras, R. and Vespignani, A., Phys. Rev. E65, 036134 (2001).
[11] Madar, N.et al., Eur. Phys. J. B38, 269 (2004).
[12] Masuda, N., New J. Phys.11, 123018 (2009).
[13] Albert, R., Jeong, H. and Barabasi, A.-L., Nature406, 378 (2000).
[14] Crucitti, P.et al., Physica A320, 622 (2003).
[15] Li, H. J.et al., Phys. Rev. E86, 016109 (2013).
[16] Li, H. J. and Zhang, X. S., Europhys. Lett.103, 58002 (2013).
[17] Bu, Z.et al., Inf. Fusion37, 10 (2017).
[18] Holme, P. and Kim, B. J., Phys. Rev. E65, 066109 (2002).
[19] Motter, A. E. and Lai, Y., Phys. Rev. E66, 065102(R) (2002).
[20] Li, H. J.et al., IEEE Trans. Emerging Top. Comput. Intell.2, 214 (2018).
[21] Crucitti, P., Latora, V. and Marchiori, M., Phys. Rev. E69, 045104(R) (2004).
[22] Pastor Satorras, R. and Vespignani, A., Phys. Rev. E63, 066117 (2001).
[23] Gao, C.et al., Int. J. Mod. Phys. C26, 1550067 (2015).
[24] Li, X. and Wang, X. F., IEEE T. Automa. Contr.51, 534 (2006).
[25] Volchenkov, D., Volchenkova, L. and Blanchard, P., Phys. Rev. E66, 046137 (2002).
[26] Li, Y.et al., Chinese Phys.14, 2153 (2005).
[27] Zhen, J. and Liu, Q. X., Chinese Phys.15, 1248 (2006).
[28] Barrat, A., Barthelemy, M. and Vespignani, A., Phys. Rev. Lett.92, 228701 (2004).
[29] Wang, W. X.et al., Phys. Rev. Lett.94, 188702 (2005).
[30] Li, X.et al., Appl. Math. Comput.310, 182 (2017).
[31] Barrat, A.et al., Phys. Rev. Lett.92, 178701 (2004).
[32] Chen, X. H.et al., Physica A: Stat. Mech. Appl.505, 500 (2018).
[33] http://snap.stanford.edu/data/index.html.
[34] Li, H. J. and Daniels, J. J., Phys. Rev. E91, 012801 (2015).
[35] Li, H. J.et al., IEEE. T. Knowl. Data. En.28, 2349 (2016).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.